Skip to main content
Log in

Prediction of properties of self-compacting concrete containing fly ash using artificial neural network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the feasibility of using artificial neural networks (ANNs) modeling to predict the properties of self-compacting concrete (SCC) containing fly ash as cement replacement. For the purpose of constructing this model, a database of experimental data was gathered from the literature and used for training and testing the model. The data used in the artificial neural network model are arranged in a format of six input parameters that cover the total binder content, fly ash replacement percentage, water–binder ratio, fine aggregates, coarse aggregates and superplasticizer. Four outputs parameters are predicted based on the ANN technique as the slump flow, the L-box ratio, the V-funnel time and the compressive strength at 28 days of SCC. To demonstrate the utility of the proposed model and improve its performance, a comparison of the ANN-based prediction model with other researcher’s experimental results was carried out, and a good agreement was found. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on SCC properties. This study shows that artificial neural network has strong potential as a feasible tool for predicting accurately the properties of SCC containing fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zongjin L (2011) Advanced concrete technology. Wiley, Hoboken

    Google Scholar 

  2. Ozawa K, Maekawa K, Kunishima H, Okamura H (1989) Performance of concrete based on the durability design of concrete structures. Proc Second East Asia Pacific Conf Struct Eng Constr 1:445–456

    Google Scholar 

  3. Okamura H et al (1995) Self-compacting high performance concrete. Proc Fifth EA SEC 3:2381–2388

    Google Scholar 

  4. EFNARC (2005) Specification and guidelines for self-compacting concrete. EFNARC Association House, Hampshire

    Google Scholar 

  5. Neville AM (2005) Properties of concrete, 4th edn. Pearson Education Limited, Essex, England

    Google Scholar 

  6. Wesche K (2005) Fly ash in concrete properties and performance. Rilem Repport 7:2005

    Google Scholar 

  7. Yahia A, Tanimura M, Shimabukuro A, Shimovama Y (1999) Effect of rheological parameters on self-compactability of concrete containing various mineral admixtures. In: International RILEM symposium on self-compacting concrete, pp 523–535

  8. Kurita M, Nomura T (1998) Highly-flowable steel fiber-reinforced concrete containing fly ash. In: Malhotra VM (ed) Proceedings of the sixth CANMET/ACI international conference on fly ash, silica fume, slag, and natural pozzolans in concrete, vol 178. ACI Special Publication, pp 159–175

  9. Miura N, Takeda N, Chikamatsu R, Sogo S (1993) Application of super workable concrete to reinforced concreted structures with difficult construction conditions. In: Zia P (ed) High performance concrete in severe environments. ACI Special Publication, USA, pp 163–186

  10. Boukhatem B, Kenai S, Tagnit-Hamou A, Ghrici M (2011) Application of new information technology on concrete: an overview. J Civ Eng Manag 17(2):248–258

    Article  Google Scholar 

  11. Boukhatem B, Ghrici M, Kenai S, Tagnit-Hamou A (2011) Prediction of efficiency factor of ground-granulated blast-furnace slag of concrete using artificial neural network. ACI Mater J V 108(1):55

    Google Scholar 

  12. Başyigit C, Akkurt I, Kilincarslan S, Beycioglu A (2010) Prediction of compressive strength of heavyweight concrete by ANN and FL models. Neural Comput Appl 19(4):507–513

    Article  MATH  Google Scholar 

  13. Severcan MH (2012) Prediction of splitting tensile strength from the compressive strength of concrete using GEP. Neural Comput Appl 21:1937–1945

    Article  Google Scholar 

  14. Gencel O, Ozel C, Koksal F, Martinez-Barrera G, Brostow W, Polat H (2013) Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete. Mater Sci 19(2):203–215

    Google Scholar 

  15. Da Silva WRL, Štemberk P (2012) Predicting self-compacting concrete shrinkage based on a modified fuzzy logic model. Eng Mech 229:1173–1183

    Google Scholar 

  16. Da Silva WRL, Štemberk P (2013) Expert system applied for classifying self-compacting concrete surface finish. Adv Eng Softw 64:47–61

    Article  Google Scholar 

  17. Nehdi ML, Bassuoni MT (2009) Fuzzy logic approach for estimating durability of concrete. Proc ICE Constr Mater 162(2):81–92

    Article  Google Scholar 

  18. Jin-li W, Hai-qing L (2010) Application of neural network in prediction for self-compaction concrete. Fuzzy information and engineering 2010. Springer, Berlin Heidelberg, pp 733–738

    Chapter  Google Scholar 

  19. Uysal M, Tanyildizi H (2012) Estimation of compressive strength of self-compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr Build Mater 27(1):404–414

    Article  Google Scholar 

  20. Siddique R, Aggarwal P, Aggarwal Y (2011) Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv Eng Softw 42(10):780–786

    Article  Google Scholar 

  21. Güneyisi E, Gesoglu M, Özbay E (2009) Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network. Mater Struct 42(4):469–484

    Article  Google Scholar 

  22. Zhou S, Shi J, Yang X, Lei L (2005) Application of neural network in prediction for flowing property of self-compacting concrete. J Water Resour Archit Eng 4:012

    Google Scholar 

  23. Li FX, Yu QJ, Wei JX, Li JX (2011) Predicting the workability of self-compacting concrete using artificial neural network. Adv Mater Res 168:1730–1734

    Google Scholar 

  24. Prasad BK, Eskandari H, Reddy BV (2009) Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr Build Mater 23(1):117–128

    Article  Google Scholar 

  25. Lippmann RP (1987) An introduction to computing with neural nets. ASSP Mag IEEE 4(2):4–22

    Article  Google Scholar 

  26. Rumellhert D, Hinto G, Williams R (1986) Learning internal representations by error propagation. MIT Press, Cambridge

    Google Scholar 

  27. Dhiyaneshwaran S, Ramanathan P, Baskar I, Venkatasubramani R (2013) Study on durability characteristics of self-compacting concrete with fly ash. Jordan J Civ Eng 7(3):342–352

    Google Scholar 

  28. Bingöl AF, Tohumcu İ (2013) Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume. Mater Des 51:12–18

    Article  Google Scholar 

  29. Gettu R, Izquierdo J, Gomes PCC, Josa A (2002) Development of high-strength self-compacting concrete with fly ash: a four-step experimental methodology. In: Proceedings of the 27th conference on our world in concrete and structures, Paramasivam y TH Tan, Singapore, pp 217–224

  30. Güneyisi E, Gesoğlu M, Özbay E (2010) Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures. Constr Build Mater 24(10):1878–1887

    Article  Google Scholar 

  31. Krishnapal P, Yadav RK, Rajeev C (2013) Strength characteristics of self compacting concrete containing fly ash. Res J Eng Sci ISSN 2278:9472

    Google Scholar 

  32. Mahalingam B, Nagamani K (2011) Effect of processed fly ash on fresh and hardened properties of self compacting concrete. Int J Earth Sci Eng 4(5):930–940, ISSN 0974-5904

  33. Muthupriya P, Sri PN, Ramanathan MP, Venkatasubramani R (2012) Strength and workability character of self compacting concrete with GGBFS, FA and SF. Int J Emerg Trends Eng Dev 2(2):424–434, ISSN 2249-6149

  34. Nepomuceno MC, Pereira-de-Oliveira LA, Lopes SMR (2014) Methodology for the mix design of self-compacting concrete using different mineral additions in binary blends of powders. Constr Build Mater 64:82–94

    Article  Google Scholar 

  35. Patel R (2003) Development of statistical models to simulate and optimize self-consolidating concrete mixes incorporating high volume of fly ash. Dissertation, University of Ryerson, Toronto

  36. Şahmaran M, Yaman İÖ, Tokyay M (2009) Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem Concr Compos 31(2):99–106

    Article  Google Scholar 

  37. Siddique R (2011) Properties of self-compacting concrete containing class F fly ash. Mater Des 32(3):1501–1507

    Article  Google Scholar 

  38. Siddique R, Aggarwal P, Aggarwal Y (2012) Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash. Constr Build Mater 29:73–81

    Article  Google Scholar 

  39. Uysal M, Yilmaz K (2011) Effect of mineral admixtures on properties of self-compacting concrete. Cem Concr Compos 33(7):771–776

    Article  Google Scholar 

  40. Demuth H, Beale M, Hagan M (2007) Neural network toolbox 5, user’s guide. The MathWorks Inc, Natick, p 849

    Google Scholar 

  41. Zhu W, Bartos PJ (2003) Permeation properties of self-compacting concrete. Cem Concr Res 33(6):921–926

    Article  Google Scholar 

  42. Naik TR, Kumar R, Ramme BW, Canpolat F (2012) Development of high-strength, economical self-consolidating concrete. Constr Build Mater 30:463–469

    Article  Google Scholar 

  43. Turk K, Karatas M, Gonen T (2013) Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC. KSCE J Civ Eng 17(1):202–209

    Article  Google Scholar 

  44. Liu M (2010) Self-compacting concrete with different levels of pulverized fuel ash. Constr Build Mater 24(7):1245–1252

    Article  Google Scholar 

  45. Yen T, Tang CW, Chang CS, Chen KH (1999) Flow behavior of high strength high performance concrete. Cem Concr Compos 21(5):413–424

    Article  Google Scholar 

  46. Aïtcin PC (1994) The use of superplasticizers in high performance concrete. In: Malier Y (ed) High performance concrete: from material to structure. E & FN Spon, London, pp 14–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Belalia Douma.

Appendix: Data sources

Appendix: Data sources

See Table 5.

Author

Year

B

P

W/B

F

C

SP

D (mm)

Lbox

Vfunnel

Fc28

Gettu et al. [29]

2002

701

37

0.27

774

723

8.10

580

0.80

10.0

69.5

733

37

0.26

748

698

8.40

660

0.90

12.0

68.2

Patel [35]

2003

400

30

0.39

946

900

1.40

510

0.96

4.5

45.0

370

36

0.43

960

900

1.85

650

0.94

3.0

46.0

430

36

0.43

830

900

0.86

480

0.60

2.5

36.0

430

36

0.43

827

900

2.15

810

0.95

2.0

48.0

400

45

0.45

850

900

1.40

760

1.00

2.5

38.0

400

45

0.39

916

900

1.40

580

1.00

3.0

45.0

400

45

0.39

916

900

1.40

600

1.00

3.0

47.0

400

45

0.39

916

900

1.40

570

1.00

3.0

49.0

400

45

0.39

916

900

1.40

590

1.00

3.3

49.0

400

45

0.39

916

900

1.40

590

1.00

3.5

49.0

400

45

0.39

916

900

2.40

770

1.00

3.5

43.0

450

45

0.39

808

900

1.58

680

1.00

2.3

50.0

370

54

0.43

930

900

0.74

600

1.00

2.8

31.0

370

54

0.43

928

900

1.85

760

1.00

2.5

33.0

430

54

0.34

874

900

0.86

540

0.87

3.3

46.0

430

54

0.36

872

900

2.15

710

1.00

4.0

52.0

400

60

0.39

886

900

1.40

630

0.91

3.5

44.0

Sahmaran et al. [36]

2009

500

0

0.35

1038

639

6.75

665

0.87

12.7

62.2

500

30

0.34

1006

620

6.75

765

0.95

10.2

52.4

500

30

0.35

1008

621

6.75

715

0.95

15.8

57.3

500

40

0.35

995

613

6.75

730

0.85

10.7

59.1

500

40

0.32

1004

618

6.75

745

0.95

11.7

52.3

500

50

0.35

988

608

6.75

710

0.90

19.2

40.8

500

50

0.3

1010

628

6.75

738

0.88

15.1

47.5

500

60

0.35

979

603

6.75

740

0.85

12.8

38.1

500

60

0.3

997

614

6.75

770

0.95

9.4

39.9

Güneyisi et al. [30]

2010

550

0

0.44

826

868

3.50

670

0.71

3.2

61.5

550

0

0.32

728

935

8.43

670

0.79

17.0

80.9

550

20

0.44

813

855

3.20

675

0.71

10.4

52.1

550

20

0.32

714

917

7.43

730

0.93

7.0

69.8

550

40

0.44

801

842

2.96

730

0.80

6.0

44.7

550

40

0.32

700

899

7.43

730

0.96

6.0

60.9

550

60

0.44

788

829

3.00

720

0.95

4.0

30.3

550

60

0.32

686

881

6.67

730

0.90

7.0

47.5

Mahalingam and Nagamani [32]

2011

450

30

0.43

789

926

2.77

660

0.88

3.5

44.8

500

30

0.39

731

862

6.15

640

0.75

2.5

53.6

550

30

0.35

711

835

4.74

610

0.86

3.2

57.3

450

40

0.43

780

917

2.77

650

0.88

3.7

41.3

500

40

0.39

724

850

6.15

680

0.88

2.3

46.7

550

40

0.35

701

823

6.77

730

0.90

3.4

54.9

450

50

0.43

770

907

2.50

675

0.72

2.7

37.1

500

50

0.39

714

836

4.92

730

0.88

2.9

41.8

550

50

0.35

703

824

5.41

725

0.88

2.4

44.4

Siddique et al. [38]

2011

550

15

0.41

910

590

10.73

673

0.89

7.5

35.2

550

20

0.41

910

590

11.01

690

0.95

4.5

33.2

550

25

0.42

910

590

9.91

603

0.85

5.2

31.5

550

30

0.43

910

590

9.91

673

0.95

6.1

30.7

550

35

0.44

910

590

9.91

633

0.92

10.0

29.6

Uysal and Yilmaz [39]

2011

550

0

0.33

869

778

8.80

690

0.82

14.5

75.9

550

15

0.33

865

762

8.80

710

0.91

9.4

74.2

550

25

0.33

887

752

8.80

740

0.93

11.7

73.4

550

35

0.33

878

742

8.80

750

0.91

17.0

67.5

Seddique [37]

2012

550

15

0.41

910

590

9.90

625

0.82

4.0

26.5

550

15

0.41

910

590

10.17

675

0.80

6.6

36.0

550

15

0.41

910

590

10.45

590

0.95

6.5

29.0

550

15

0.41

910

590

10.72

675

0.90

7.5

35.5

550

20

0.41

910

590

6.60

600

0.70

4.8

24.0

550

20

0.41

910

590

7.15

645

0.95

4.5

27.0

550

20

0.41

910

590

9.90

605

0.82

7.5

32.0

550

20

0.41

910

590

11.00

690

0.90

4.5

33.5

550

25

0.42

910

590

7.70

600

0.60

7.0

26.0

550

25

0.42

910

590

8.25

625

0.80

5.2

28.0

550

25

0.42

910

590

9.90

605

0.60

7.0

32.0

550

25

0.42

910

590

11.00

590

0.60

4.2

21.7

550

30

0.43

910

590

7.15

610

0.87

5.4

21.0

550

30

0.43

910

590

7.70

600

0.90

6.5

25.5

550

30

0.43

910

590

8.80

605

0.70

8.9

27.5

550

30

0.43

910

590

9.90

675

0.95

5.0

31.0

550

35

0.44

910

590

7.15

590

0.86

6.1

17.0

550

35

0.44

910

590

8.80

590

0.80

8.0

23.0

550

35

0.44

910

590

9.35

645

0.90

9.0

25.0

550

35

0.44

910

590

9.90

635

0.92

10.0

29.5

Muthupriya et al. [33]

2012

500

30

0.35

900

600

11.00

660

0.90

9.0

29.2

500

40

0.35

900

600

10.75

675

0.93

7.0

28.6

500

50

0.35

900

600

10.50

680

0.95

7.2

28.7

Dhiyaneshwaran et al. [27]

2013

530

0

0.45

768

668

4.55

660

0.92

12.0

30.0

530

10

0.45

768

668

4.55

675

0.93

10.6

32.2

530

20

0.45

768

668

4.55

680

0.95

9.8

37.9

530

30

0.45

768

668

4.55

690

0.95

8.5

41.4

530

40

0.45

768

668

4.55

685

0.95

7.9

37.2

530

50

0.45

768

668

4.55

678

0.95

7.6

35.9

Bingöl and Tohumcu [28]

2013

500

0

0.35

967

694

8.00

630

0.84

6.1

78.6

500

25

0.35

938

673

7.50

660

0.85

7.0

62.0

500

40

0.35

923

663

7.50

680

0.88

6.2

55.0

500

55

0.35

908

652

7.50

700

0.91

7.0

42.7

Krishnapal et al. [31]

2013

450

0

0.45

890

810

9.25

687

0.80

9.0

50.0

480

0

0.4

890

810

13.30

650

0.88

12.0

52.0

450

10

0.45

890

810

8.20

689

0.79

8.6

45.0

480

10

0.4

890

810

9.90

665

0.85

9.0

46.0

450

20

0.45

890

810

6.40

690

0.78

8.0

41.0

480

20

0.4

890

810

9.68

685

0.82

8.4

42.0

450

30

0.45

890

810

4.80

695

0.78

8.0

39.0

480

30

0.4

890

810

9.40

680

0.80

8.1

40.0

Nepomuceno et al. [34]

2014

575

0

0.31

794

772

17.22

645

0.75

13.3

77.8

589

0

0.31

813

729

17.64

640

0.75

10.6

76.8

628

0

0.29

744

772

19.53

615

0.77

11.6

82.9

633

0

0.27

656

875

20.58

635

0.79

13.2

86.8

643

0

0.29

761

729

19.95

630

0.86

9.9

81.9

670

0

0.27

695

772

21.84

620

0.81

10.4

85.0

551

16

0.31

822

772

11.34

625

0.70

11.6

59.6

564

16

0.31

841

729

11.55

630

0.77

10.3

56.8

588

16

0.28

752

820

12.39

635

0.77

11.0

64.8

604

16

0.28

772

772

12.71

625

0.80

9.7

63.1

613

16

0.26

686

875

12.92

615

0.77

12.7

67.5

618

16

0.28

790

729

13.02

640

0.83

11.6

63.6

649

16

0.26

726

772

13.65

650

0.84

10.0

69.1

613

24

0.26

685

875

15.33

645

0.80

13.3

78.2

633

24

0.26

706

820

15.86

630

0.79

12.4

79.2

649

24

0.26

726

772

16.28

655

0.84

10.5

80.3

567

25

0.3

846

729

13.86

655

0.82

11.3

69.9

607

25

0.27

774

772

15.12

640

0.83

10.8

74.5

620

25

0.27

792

729

15.54

635

0.83

10.1

75.7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belalia Douma, O., Boukhatem, B., Ghrici, M. et al. Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput & Applic 28 (Suppl 1), 707–718 (2017). https://doi.org/10.1007/s00521-016-2368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2368-7

Keywords

Navigation