Skip to main content
Log in

Efficient subspace clustering based on self-representation and grouping effect

  • Recent advances in Pattern Recognition and Artificial Intelligence
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Traditional subspace clustering methods [such as sparse subspace clustering (SSC), least squares representation (LSR) and smooth representation clustering] either considered the grouping effect or the sparsity to group original data into clusters. This paper demonstrates the necessary of both the grouping effect and the sparsity for conducting subspace clustering, by proposing a new Self-Representation and Subspace Clustering based on Grouping Effect (SRGE) method. Specifically, first of all, a row sparse \(\ell_{2,1}\)-norm regularizer is utilized to represent each sample by other samples. Then, the grouping effect of the data is designed to ensure that the coefficient of close samples is similar, aiming at generating a diagonal block self-representation coefficient matrix. Finally, an affinity matrix is obtained for conducting spectral clustering. The proposed method can be regarded as a trade-off between SSC and LSR. The experimental results of segmentation on real datasets showed that the proposed method significantly outperformed the state-of-the-art methods in terms of all kinds of evaluation metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multi-label learning for image classification. IEEE Trans Cybern 46(2):450–461

    Article  Google Scholar 

  2. Zhu X, Suk HI, Wang L et al (2015) A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Human Immunol 75(6):570–577

    Google Scholar 

  3. Yang Y, Zha Z, Gao Y et al (2014) Exploiting web images for semantic video indexing via robust sample-specific loss. IEEE Trans Multimed 16(6):1677–1689

    Article  Google Scholar 

  4. Zhu X, Huang Z, Shen HT et al (2013) Linear cross-modal hashing for effective multimedia search. In: ACM MM, pp 143–152

  5. Zhu X, Huang Z, Yang Y et al (2013) Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognit 46(1):215–229

    Article  MATH  Google Scholar 

  6. Wang T, Qin Z, Zhang S et al (2012) Cost-sensitive classification with inadequate labeled data. Inf Syst 37(5):508–516

    Article  Google Scholar 

  7. Zhu X, Suk HI, Lee SW et al (2015) Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification. IEEE Trans Biomed Eng 63:607–618

    Article  Google Scholar 

  8. Tomasi C, Kanade T (1992) Shape and motion from image streams under orthography: a factorization method. Int J Comput Vis 9(2):137–154

    Article  Google Scholar 

  9. Zhu X, Zhang L, Huang Z (2014) A sparse embedding and least variance encoding approach to hashing. IEEE Trans Image Process 23(9):3737–3750

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu X, Zhang S, Jin Z et al (2011) Missing value estimation for mixed-attribute datasets. IEEE Trans Knowl Data Eng 23(1):110–121

    Article  Google Scholar 

  11. Ma Y, Derksen H, Hong W et al (2007) Segmentation of multivariate mixed data via lossy data coding and compression. IEEE Trans Pattern Anal Mach Intell 29(9):1546–1562

    Article  Google Scholar 

  12. Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28(2):52–68

    Article  Google Scholar 

  13. Costeira JP, Kanade T (2005) A multibody factorization method for independently moving objects. Int J Comput Vis 29(3):159–179

    Article  Google Scholar 

  14. Rene V, Yi M, Shankar S (2005) Generalized principal component analysis (GPCA). IEEE Trans Pattern Anal Mach Intell 27(12):1745–1959

    Google Scholar 

  15. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: CVPR, pp 2790–2797

  16. Lu CY, Min H, Zhao ZQ et al (2012) Robust and efficient subspace segmentation via least squares regression. In: ECCV, pp 347–360

  17. Peng X, Zhang L, Yi Z (2013) Scalable sparse subspace clustering. In: Computer vision and pattern recognition (CVPR), pp 430–437

  18. Liu G, Lin Z, Yan S et al (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  19. Hu H, Lin Z, Feng J et al (2014) Smooth representation clustering. In: CVPR, pp 3834–3841

  20. Zhu X, Li X, Zhang S et al (2016) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 1–13

  21. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal \(\ell_{1}\)-norm solutions is also the sparest solution. Commun Pure Appl Math 59(6): 797–829

  22. Zhu X, Huang Z, Cui J et al (2013) Video-to-shot tag propagation by graph sparse group lasso. IEEE Trans Multimed 15(3):633–646

    Article  Google Scholar 

  23. von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  24. Yang Y, Yang Y, Shen H et al (2013) Discriminative nonnegative spectral clustering with out-of-sample extension. IEEE Trans Knowl Data Eng 25(8):1760–1771

    Article  Google Scholar 

  25. Lu C, Lin Z, Yan S (2013) Correlation adaptive subspace segmentation by trace lasso. In: ICCV, pp 1345–1352

  26. Zhu X, Suk HI, Shen D (2014) A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. Neuroimaging 100:91–105

    Article  Google Scholar 

  27. Zhang S, Zhang C, Yang Q (2003) Data preparation for data mining. Appl Artif Intell 17(5–6):375–381

    Article  Google Scholar 

  28. Cai D, He XF, Han JW (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637

    Article  Google Scholar 

  29. Peng X, Yi Z, Tang H (2015) Robust subspace clustering via thresholding ridge regression. In: AAAI conference on artificial intelligence (AAAI), pp 3827–3833

  30. Zhang S (2012) Nearest neighbor selection for iteratively kNN imputation. J Syst Softw 85(11):2541–2552

    Article  Google Scholar 

  31. Zhu X, Huang Z, Shen H, Cheng J et al (2012) Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognit 45(8):3003–3016

    Article  MATH  Google Scholar 

  32. Zhang S, Qin Z, Ling C et al (2005) "Missing is useful": Missing values in cost-sensitive decision trees. IEEE Trans On Knowl and Data Eng 17(12):1689–1693

    Article  Google Scholar 

  33. Zhang S, Zhang C, Yan X (2003) Post-mining: maintenance of association rules by weighting. Inf Syst 28(7):691–707

    Article  Google Scholar 

  34. Grave E, Obozinski G, Bach F (2011) Trace lasso: a trace norm regularization for correlated designs. In: NIPS, pp 2187–2195

  35. Bartels R, Stewart G (1972) Solution of the matrix equation AX + XB = C. Commun ACM 15(9):820–826

    Article  MATH  Google Scholar 

  36. Qin Y, Zhang S, Zhu X et al (2007) Semi-parametric optimization for missing data imputation. Appl Intell 27(1):79–88

    Article  MATH  Google Scholar 

  37. Hull JJ (1994) A database for handwritten text recognition research. IEEE Trans Pattern Anal Mach Intell 16(5):550–554

    Article  Google Scholar 

  38. Wu X, Zhang C, Zhang S (2005) Database classification for multi-database mining. Inf Syst 30:71–88

    Article  MATH  Google Scholar 

  39. Siegler RS (1976) Three aspects of cognitive development. Cognit Psychol 28:481–502

    Article  Google Scholar 

  40. Lancaster P (1970) Explicit solutions of linear matrix equations. SIAM Rev 12(4):544–566

    Article  MathSciNet  MATH  Google Scholar 

  41. Kuhn H (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2(1–2):83–97

    Article  MathSciNet  MATH  Google Scholar 

  42. Elhamifar E, Vidal R (2012) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  43. Feng J, Lin Z, Xu H et al (2014) Robust subspace segmentation with block-diagonal prior. In: CVPR, pp 3818–3825

  44. Wu X, Zhang C, Zhang S (2004) Efficient mining of both positive and negative association rules. ACM Trans On Inf Syst 22(3):381–405

    Article  Google Scholar 

  45. Liu H, Ma Z, Zhang S et al (2015) Penalized partial least square discriminant analysis with l1 for multi-label data. Pattern Recognit 48(5):1724–1733

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the China 973 Program under Grant 2013CB329404, in part by the National Natural Science Foundation of China under Grant 61450001, Grant 61263035 and Grant 61573270, in part by the Guangxi Natural Science Foundation under Grant 2012GXNSFGA060004 and Grant 2015GXNSFCB139011, in part by the China Postdoctoral Science Foundation under Grant 2015M57570837, in part by the Guangxi Higher Institutions’ Program of Introducing 100 High-Level Overseas Talents, in part by the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing and in part by the Guangxi Bagui Scholar Teams for Innovation and Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, Y., Cheng, D. et al. Efficient subspace clustering based on self-representation and grouping effect. Neural Comput & Applic 29, 51–59 (2018). https://doi.org/10.1007/s00521-016-2353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2353-1

Keywords

Navigation