Skip to main content
Log in

PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Maximum power point tracking (MPPT) is used in photovoltaic (PV) systems to maximize its output power. This paper introduces a new MPPT control design to PV system supplied switched reluctance motor (SRM) based on PI controller. The developed PI controller is used to reach MPPT by monitoring the voltage and current of the PV array and adjusting the duty cycle of the DC/DC converter. The design task of MPPT is formulated as an optimization problem which is solved by BAT algorithm to search for optimal parameters of PI controller. Simulation results have shown the validity of the suggested technique in delivering MPPT to SRM under atmospheric conditions. Also, the performance of the developed BAT algorithm is compared with particle swarm optimization for various disturbances to confirm its robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Sen Z (2008) Solar energy fundamentals and modeling technique. Springer, Berlin

    Google Scholar 

  2. Krauter SCW (2006) Solar electric power generation-photovoltaic energy system. Springer, Berlin

    Google Scholar 

  3. da Rosa AV (2005) Fundamentals of renewable energy processes. Elsevier, Amsterdam

    Google Scholar 

  4. Wurfel P (2005) Physics of solar cells from principles to new concept. Wiley, New York

    Book  Google Scholar 

  5. Veerachary M, Seniyu T, Uezato K (2001) Maximum power point tracking control of IDB converter supplied PV system. IEE Proc Electron Power Appl 148(6):494–502

    Article  Google Scholar 

  6. Armstrong S, Hurley W (2004) Self regulating maximum power point tracking for solar energy systems. In: 39th international universities power engineering conference. UPEC, Bristol, UK, pp 604–609

  7. Piegari L, Rizzo R (2010) Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking. IET Renew Power Gener 4(4):317–328

    Article  Google Scholar 

  8. Brambilla A, Gambarara M, Garutti A, Ronchi F (1999) New approach to photovoltaic arrays maximum power point tracking. In: 30th annual IEEE power electronics specialists conference (PESC 99), vol 2, pp 632–637

  9. Hohm DP, Ropp ME (2000) Comparative study of maximum power point tracking algorithm using an experimental programmable, maximum power point tracking test bed. In: Proceedings 28th IEEE photovoltaic specialist conference, pp 1699–1702

  10. Swiegers W, Enslin J (1998) An integrated maximum power point tracker for photovoltaic panels. In: Proceedings IEEE international symposium on industrial electronics, vol 1, pp 40–44

  11. Oshiro M, Tanaka K, Senjyu T, Toma S, Atsushi Y, Saber A, Funabashi T, Kim C (2011) Optimal voltage control in distribution systems using PV generators. Int J Electr Power Energy Syst 33(3):485–492

    Article  Google Scholar 

  12. Hui J, Sun X (2010) MPPT strategy of PV system based on adaptive fuzzy PID algorithm. In: International conference on life system modeling and simulation, LSMS 2010, and international conference on intelligent computing for sustainable energy and environment, ICSEE, vol 97, pp 220–228

  13. Ouada M, Meridjet M, Saoud M, Talbi N (2013) Increase efficiency of photovoltaic pumping system based BLDC motor using fuzzy logic MPPT control. WSEAS Trans Power Syst 8(3):104–113

    Google Scholar 

  14. AI-Amoudi A, Zhang L (2000) Application of radial basis function networks for solar-array modeling and maximum power-point prediction. IEE Proc Gener Transm Distrib 147(5):310–316

    Article  Google Scholar 

  15. Bahgat ABG, Helwa NH, Ahmad GE, El Shenawy ET (2005) Maximum power point tracking controller for pv systems using neural networks. Renew Energy 30(8):1257–1268

    Article  Google Scholar 

  16. Zhang H, Cheng S (2011) A new MPPT algorithm based on ANN in solar PV systems. Adv Comput Commun Control Autom LNEE 121:77–84

    Article  Google Scholar 

  17. Younis MA, Khatib T, Najeeb M, Ariffin AM (2012) An improved maximum power point tracking controller for PV systems using artificial neural network. Przeglad Elektrotechniczny 88(3b):116–121

    Google Scholar 

  18. Ishaque K, Salam Z (2011) An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol Energy 85:2349–2359

    Article  Google Scholar 

  19. Ishaque K, Salam Z, Taheri H, Shamsudin A (2011) A critical evaluation of EA computational methods for photovoltaic cell parameter extraction based on two diode model. Sol Energy 85:1768–1779

    Article  Google Scholar 

  20. Ramaprabha R, Gothandaraman V, Kanimozhi K, Divya R, Mathur BL (2011) Maximum power point tracking using GA optimized artificial neural network for solar PV system. In: IEEE international conference on electrical energy systems, pp 264–268

  21. Benyoucef A, Chouder A, Kara K, Silvestre S, Sahed O (2015) Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl Soft Comput 32:38–48

    Article  Google Scholar 

  22. Oshaba AS, Ali ES, Abd Elazim SM (2015) PI Controller design using artificial bee colony algorithm for MPPT of photovoltaic system supplied DC motor-pump load. Complexity. doi:10.1002/cplx.21670

    Google Scholar 

  23. Pooja B, Dub SS, Singh JB, Lehana P (2013) Solar power optimization using BFO algorithm. Int J Adv Res Comput Sci Softw Eng 3(12):238–241

    Google Scholar 

  24. Oshaba AS, Ali ES (2014) Bacteria foraging: a new technique for speed control of DC series motor supplied by photovoltaic system. Int J WSEAS Trans Power Syst 9:185–195

    Google Scholar 

  25. Yang XS (2011) BAT algorithm for multiobjective optimization. Int J Bio-Inspir Comput 3(5):267–274

    Article  Google Scholar 

  26. Bora TC, Coelho LS, Lebensztajn L (2012) BAT-inspired optimization approach for the brushless DC wheel motor problem. IEEE Trans Magn 48(2):947–950

    Article  Google Scholar 

  27. Yang XS, Gandomi AH (2012) BAT algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  28. Rakesh V, Aruna SB, Raju TD (2013) Combined economic load and emission dispatch evaluation using BAT algorithm. Int J Eng Res Appl 3(3):1224–1229

    Google Scholar 

  29. Ramesh B, Mohan VCJ, Reddy VCV (2013) Application of BAT algorithm for combined economic load and emission dispatch. Int J Electr Electron Eng Telecommun 2(1):1–9

    Google Scholar 

  30. Yang Xin-She (2013) BAT algorithm: literature review and applications. Int J Bio-Inspir Comput 5(3):141–149

    Article  Google Scholar 

  31. Biswal S, Barisal AK, Behera A, Prakash T (2013) Optimal power dispatch using BAT algorithm. In: International conference on energy efficient technologies for sustainability (ICEETS), pp 1018–1023

  32. Rodrigues D, Pereira LAM, Nakamura RYM, Costa KAP, Yang XS, Souza AN, Papa JP (2014) A wrapper approach for feature selection based on BAT algorithm and optimum-path forest. Expert Syst Appl 41(5):2250–2258

    Article  Google Scholar 

  33. Reddy PSK, Kumar PA, Vaibhav GNS (2015) Application of BAT algorithm for optimal power dispatch. Int J Innov Res Adv Eng 2(2):113–119

    Google Scholar 

  34. Ali ES (2014) Optimization of power system stabilizers using BAT search algorithm. Int J Electr Power Energy Syst 61:683–690

    Article  Google Scholar 

  35. Krishnan R (2001) Switched reluctance motor drives modeling, simulation, analysis, design, and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  36. Kalaivani L, Subburaj P, Iruthayarajan MW (2013) Speed control of switched reluctance motor with torque ripple reduction using non-dominated sorting genetic algorithm (NSGA-II). Int J Electr Power Energy Syst 53:69–77

    Article  Google Scholar 

  37. Daryabeigi E, Dehkordi BM (2014) Smart bacterial foraging algorithm based controller for speed control of switched reluctance motor drives. Int J Electr Power Energy Syst 62:364–373

    Article  Google Scholar 

  38. Oshaba AS (2013) Performance of a sensorless SRM drive fed from a photovoltaic system. Res J Appl Sci Eng Technol 6(17):3165–3173

    Google Scholar 

  39. Oshaba AS, Ali ES, Abd-Elazim SM (2015) ACO based speed control of SRM fed by photovoltaic system. Int J Electr Power Energy Syst 67:529–536

    Article  Google Scholar 

  40. Bose BK (2002) Modern power electronics and AC drives. Prentice-Hall, New Jersey

    Google Scholar 

  41. Oshaba AS, Ali ES, Abd-Elazim SM (2014) Speed control of switched reluctance motor fed by PV system using ant colony optimization algorithm. Int J WSEAS Trans Power Syst 9:376–387

    Google Scholar 

  42. Mehta R, Mehta VK (2013) Principles of electrical machines, 2nd edn. S. Chand, New Delhi

    Google Scholar 

  43. Hussein K, Muta I, Hoshino T, Oskada M (1995) Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. IEE Proc Gener Transm Distrib 142(1):59–64

    Article  Google Scholar 

  44. Jaboori MG, Saied MM, Hanafy AA (1991) A contribution to the simulation and design optimization of photovoltaic systems. IEEE Trans Energy Convers 6(3):401–406

    Article  Google Scholar 

  45. Hua C, Shen C (1997) Control of DC/DC converters for solar energy system with maximum power tracking. In: 23rd international conference on industrial electronics, control and instrumentation, IECON’97, vol 2, pp 827–832

  46. Liu X, Lopes LAC (2004) An improvement perturbation and observation maximum power point tracking algorithm for PV arrays. In: Power electronics specialists conference, PESC’04, vol 3, pp 2005–2010

  47. Nafeh AA, Fahmy FH, Mahgoub OA, El-Zahab EM (1998) Developed algorithm of maximum power tracking for stand-alone photovoltaic system. Energy Sour 20:45–53

    Article  Google Scholar 

  48. Yu GJ, Jung YS, Choi JY, Kim GS (2004) A novel two-mode MPPT control algorithm based on comparative study of existing algorithms. Sol Energy 76(4):445–463

    Article  Google Scholar 

  49. Cheikh MSA, Larbes C, Kebir GFT, Zerguerras A (2007) Maximum power point tracking using fuzzy logic control scheme. Revue des Energies Renouvelables 10(3):387–395

    Google Scholar 

  50. Amrouche B, Belhamel M, Guessomm A (2007) Artificial Intelligence based MPPT method for photovoltaic systems. Revue des Energies Renouvelables, ICRESD-07 Tlemcen, pp 11–16

  51. Oshaba AS, Ali ES, Abd-Elazim SM (2014) MPPT control design of PV generator powered DC motor-pump system based on artificial bee colony algorithm. J Electr Eng 14(4):315–324

    Google Scholar 

  52. Kennedy JF, Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence, 1st edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  53. Oshaba AS, Ali ES (2013) Speed control of induction motor fed from wind turbine via particle swarm optimization based PI controller. Res J Appl Sci Eng Technol 5(18):4594–4606

    Google Scholar 

  54. Oshaba AS, Ali ES (2013) Swarming speed control for DC permanent magnet motor drive via pulse width modulation technique and DC/DC converter. Res J Appl Sci Eng Technol 5(18):4576–4583

    Google Scholar 

  55. Mahendiran TV, Thanushkodi K, Thangam P (2012) Speed control of switched reluctance motor using new hybrid particle swarm optimization. J Comput Sci 8(9):1473–1477

    Article  Google Scholar 

  56. Ali ES, Abd-Elazim SM (2013) Power system stability enhancement via bacteria foraging optimization algorithm. Int Arab J Sci Eng 38(3):599–611

    Article  Google Scholar 

  57. Abd-Elazim SM, Ali ES (2013) Synergy of particle swarm optimization and bacterial foraging for TCSC damping controller design. Int J WSEAS Trans Power Syst 8(2):74–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Ali.

Appendix

Appendix

  1. (a)

    SRM parameters [38, 39]: N s = 8, N r = 6, rating speed = 13,700 rpm, C r = 0.8, q = 4, Phase resistance of stator = 17 Ω, Phase inductance of aligned position = 0.605 H, Phase inductance of unaligned position = 0.1555 H, Step angle = 15°.

  2. (b)

    PV parameters: A = 1.2153; E g = 1.11; I or = 2.35e−8; I sc = 4.8; T r = 300; K = 1.38e−23; n s = 36; q o = 1.6e−19; k i  = 0.0021.

  3. (c)

    The parameters of BAT search algorithm are as follows: Max generation = 100; population size = 50; β = γ = 0.9, L min = 0; L 0 = 1, f min = 0; f max = 100.

  4. (d)

    PSO parameters: Max generation = 100; No. of Population in swarm = 50; C 1 = C 2 = 2; ω = 0.9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshaba, A.S., Ali, E.S. & Abd Elazim, S.M. PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm. Neural Comput & Applic 28, 651–667 (2017). https://doi.org/10.1007/s00521-015-2091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2091-9

Keywords

Navigation