Skip to main content
Log in

An adaptive neural networks formulation for the two-dimensional principal component analysis

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study, for the first time, developed an adaptive neural networks (NNs) formulation for the two-dimensional principal component analysis (2DPCA), whose space complexity is far lower than that of its statistical version. Unlike the NNs formulation of principal component analysis (PCA, i.e., 1DPCA), the solution with lower iteration in nature aims to directly deal with original image matrices. We also put forward the consistence in the conceptions of ‘eigenfaces’ or ‘eigengaits’ in both 1DPCA and 2DPCA neural networks. To evaluate the performance of the proposed NN, the experiments were carried out on AR face database and on 64 × 64 pixels gait energy images on CASIA(B) gait database. The less reconstruction error was exploited using the proposed NN in the condition of a large sample set compared to adaptive estimation of learning algorithms for NNs of PCA. On the contrary, if the sample set was small, the proposed NN could achieve a higher residue error than PCA NNs. The amount of calculation for the proposed NN here could be smaller than that for the PCA NNs on the feature extraction of the same image matrix, which represented an efficient solution to the problem of training images directly. On face and gait recognition tasks, a simple nearest neighbor classifier test indicated a particular benefit of the neural network developed here which serves as an efficient alternative to conventional PCA NNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yang J, Zhang D, Alejandro FF, Yang J (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  2. Wang L, Wang X, Feng J (2006) On image matrix based feature extraction algorithms. IEEE Trans Syst Man Cybern B Cybern 36:194–197

    Article  Google Scholar 

  3. Ren CX, Dai DQ (2010) Incremental learning of bidirectional principal components for face recognition. Pattern Recogn 43(10):318–330

    Article  MATH  Google Scholar 

  4. Ben X, Wang K, Yan R, POPOOLA Oluwatoyin Pius (2011) Subpattern-based complete two dimensional principal component analysis for gait recognition. Proc Chin Assoc Sci Technol 7(2):16–22

    Google Scholar 

  5. Xu A, Jin X, Jiang Y (2006) Complete Two-Dimensional PCA for Face Recognition. In: 18th International conference on pattern recognition, Hong Kong, China, vol 3, pp 481–484

  6. Zhang D, Zhou Z (2005) (2D)2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69:224–231

    Article  Google Scholar 

  7. Ye J (2004) Generalized low rank approximation of matrices. In: 21st International conference on machine learning, pp 887–894

  8. Liu J, Chen S (2006) Non-iterative generalized low rank approximation of matrices. Pattern Recogn Lett 27:1002–1008

    Article  Google Scholar 

  9. Lu C, Liu W, An S (2008) A simplified GLRAM algorithm for face recognition. Neurocomputing 72:212–217

    Article  Google Scholar 

  10. Kima YG, Songa YJ, Changa UD, Kimb DW, Yunc TS, Ahna JH (2008) Face recognition using a fusion method based on bidirectional 2DPCA. Appl Math Comput 205:601–607

    MathSciNet  Google Scholar 

  11. Yang J, Liu C (2007) Horizontal and vertical 2DPCA-based discriminant analysis for face verification on a large-scale database. IEEE Trans Inf Forensics Secur 2:781–792

    Article  Google Scholar 

  12. Baldi PF, Hornik K (1995) Learning in linear neural networks: a survey. IEEE Trans Neural Netw 6:837–858

    Article  Google Scholar 

  13. Diamantaras KI, Kung SY (1996) Principal component neural networks: theory and applications. In: Adaptive and learning systems for signal processing, communications, and control, Wiley, New York

  14. Oja E (1982) A simplified neuron model as a principal component analyzer. J Math Biol 15:267–273

    Article  MathSciNet  MATH  Google Scholar 

  15. Oja E, Karhunen J (1985) On stochastic approximation of eigenvectors and eigenvalues of the expectation of a random matrix. J Math Anal Appl 104:69–84

    Article  MathSciNet  MATH  Google Scholar 

  16. Lv JC, Zhang Y, Li YX (2015) Non-divergence of stochastic discrete time algorithms for PCA neural networks. IEEE Trans Neural Netw Learn Syst 26(2):394–399

    Article  MathSciNet  Google Scholar 

  17. Sanger TD (1989) Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw 2:459–473

    Article  Google Scholar 

  18. Oja E (1992) Principal components, minor components and linear neural networks. Neural Netw 5:927–935

    Article  Google Scholar 

  19. Kung SY, Diamantaras KI, Taur JS (1994) Adaptive principal component extraction and applications. IEEE Trans Signal Process 42:1202–1217

    Article  Google Scholar 

  20. Haykin S (1994) Neural networks—a comprehensive foundation. Macmillan, New York

    MATH  Google Scholar 

  21. Andreas W, Kurt H (2000) Local PCA Algorithms. IEEE Trans Neural Netw 11(6):1242–1250

    Article  Google Scholar 

  22. Kong XY, An QS, Ma HG et al (2012) Convergence analysis of deterministic discrete time system of a unified self-stabilizing algorithm for PCA and MCA. Neural Netw 36:64–72

    Article  MATH  Google Scholar 

  23. Karhunen J, Oja E, Wang L, Vigario R, Joutsensalo J (1997) A class of neural networks for independent component analysis. IEEE Trans Neural Netw 8(3):486–504

    Article  Google Scholar 

  24. Gou S, Jiao L (2005) Image recognition using Synergetic Neural Network. Lect Notes Comput Sci 3497(2):286–291

    Article  MATH  Google Scholar 

  25. Chen S (1995) Nonlinear time series modeling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning. Electron Lett 31:117–118

    Article  Google Scholar 

  26. Tomenko Vladimir (2011) Online dimensionality reduction using competitive learning and Radial Basis Function network. Neural Netw 24(5):501–511

    Article  Google Scholar 

  27. Eric CT, James CB, Nikhil RP (1994) Fuzzy Kohonen clustering networks. Pattern Recogn 27(5):757–764

    Article  Google Scholar 

  28. Ceylan R, Ozbay Y (2007) Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network. Expert Syst Appl 33(2):286–295

    Article  Google Scholar 

  29. Huang W, Oh SK, Pedrycz W (2014) Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs). Neural Netw 60:166–181

    Article  Google Scholar 

  30. Alexandridis Antonios K, Zapranis Achilleas D (2013) Wavelet neural networks: a practical guide. Neural Netw 42:1–27

    Article  MATH  Google Scholar 

  31. Zhang F, Du B, Zhang LP (2015) Saliency-guided unsupervised feature learning for scene classification. IEEE Trans Geosci Remote Sens 53(4):2175–2184

    Article  Google Scholar 

  32. Carvajal Gonzalo, Figueroa Miguel (2014) Model, analysis, and evaluation of the effects of analog VLSI arithmetic on linear subspace-based image recognition. Neural Netw 55:72–82

    Article  Google Scholar 

  33. Bian W, Tao D (2011) Max-min distance analysis by using sequential SDP relaxation for dimension reduction. IEEE Trans Pattern Anal Mach Intell 33(5):1037–1050

    Article  Google Scholar 

  34. Yang WK, Wang ZY, Sun CY (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27

    Article  Google Scholar 

  35. Yang WK, Sun CY, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recogn 44(8):1649–1657

    Article  MATH  Google Scholar 

  36. Sun M, Zhao L, Cao W, Xu Y, Dai X, Wang X (2010) Novel hysteretic noisy chaotic neural network for broadcast scheduling problems in packet radio networks. IEEE Trans Neural Netw 21(9):1422–1433

    Article  Google Scholar 

  37. Chen W, Jiao L, Li J, Li R (2010) Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans Syst Man Cybern B Cybern 40(3):939–950

    Article  Google Scholar 

  38. Chang C, Juang J (2008) An adaptive multipath mitigation filter for GNSS applications. EURASIP J Adv Signal Process. http://portal.acm.org/citation.cfm?id=137.6536.1387861

  39. Gross R (2005) Face databases. In: Jain AK, Li SZ (eds) Handbook of face recognition, vol 1. Springer, New York, p 22

  40. Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: Proceedings of 18th international conference on pattern recognition, Hong Kong, China, pp 441–444

  41. Ben X, Meng W, Yan R (2012) Dual-ellipse fitting approach for robust gait periodicity detection. Neurocomputing 79:173–178

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. T. Tan from the National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences, for providing us with the CASIA(B) gait database. This project is supported by the Natural Science Foundation of China (Grant No. 61201370), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131120030), the Independent Innovation Foundation for Postdoctoral Scientists of Shandong Province (Grant No. 201303100), the National Science Foundation for Postdoctoral Scientists of China (Grant No. 2013M530321), the Special Program of China Postdoctoral Science Foundation (Grant No. 2014T70636) and the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information, Ministry of Education (Grant No. 30920140122006). The authors thank the reviewers, Prof. Jian Yang from Nanjing University of Science and Technology, Prof. Yanfeng Gu and Prof. Jiafeng Liu from Harbin Institute of Technology, Prof. Wankou Yang from Southeast University and Prof. Chuanxian Ren from Sun Yat-Sen University for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianye Ben.

Appendix

Appendix

Here, we provide a proof of Eq. (29).

$$ \begin{aligned} \varvec{s}(t + 1) & = \varvec{s}(t) + \gamma [\varvec{y}_{r} (t)\varvec{Y}^{\text{T}} (t) - \varvec{y}_{r} (t)\varvec{y}_{r}^{\text{T}} (t)\varvec{s}(t)] \\ & = s(t) + \gamma [\varvec{w}_{r} (t)\varvec{X}(t)\varvec{X}^{\text{T}} (t)\varvec{W}^{\text{T}} (t) \\ \quad + \varvec{s}(t)\varvec{W}(t)\varvec{X}(t)\varvec{X}^{\text{T}} (t)\varvec{W}^{\text{T}} (t) - \varvec{y}_{r} (t)\varvec{y}_{r}^{\text{T}} (t)\varvec{s}(t)] \\ \end{aligned} $$

The statistical average of \( \varvec{s}(t + 1) \) can be written as

$$ \begin{aligned} \varvec{s}(t + 1) & = \varvec{s}(t) + \gamma [\varvec{w}_{r} (t)\varvec{RW}^{\text{T}} (t) \\ \quad + \varvec{s}(t)\varvec{W}(t)\varvec{RW}^{\text{T}} (t) - \sigma (t)\varvec{s}(t)] \\ \end{aligned} $$

Therefore,

$$ \begin{aligned} \varvec{s}_{i} (t + 1) & = \varvec{s}_{i} (t) + \gamma \theta_{i} (t)\lambda_{i} + \gamma \varvec{s}_{i} (t)\lambda_{i} - \gamma \sigma (t)\varvec{s}_{i} (t) \\ & = \gamma\varvec{\theta}_{i} (t)\lambda_{i} + (1 + \gamma \lambda_{i} - \gamma \sigma (t))\varvec{s}_{i} (t) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben, X., Meng, W., Wang, K. et al. An adaptive neural networks formulation for the two-dimensional principal component analysis. Neural Comput & Applic 27, 1245–1261 (2016). https://doi.org/10.1007/s00521-015-1922-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1922-z

Keywords

Navigation