Skip to main content

Advertisement

Log in

Comparing a genetic and a psychological factor as correlates of anxiety, depression, and chronic stress in men with prostate cancer

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

Some prostate cancer (PCa) patients become clinically anxious or depressed after diagnosis and treatment. Some also show the physiological signs of chronic stress. However, there are currently no data describing how these particular patients might be identified at intake. This study tested the individual and combined predictive power of a psychological factor and a genetic factor as potential predictors of anxiety, depression, and chronic stress in a sample of PCa patients.

Methods

Ninety-five PCa patients completed psychological inventories for anxiety, depression, and psychological resilience (PR) and also gave a saliva sample for cortisol and a mouthwash sample for genetic testing for the presence of the BDNF Val66Met polymorphism.

Results

High PR patients had significantly lower anxiety and depression than low PR patients, but showed no significant differences in their salivary cortisol. Carriers of the Met allele of the BDNF Val66Met polymorphism had significantly higher salivary cortisol concentrations than patients who did not carry this allele.

Conclusions

Each of these two factors may provide valuable information regarding the vulnerability of PCa patients to anxiety, depression, or chronic stress. Suggestions are made for their inclusion in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watts S, Leydon G, Birch B, Prescott P, Lai L, Eardley S, Lewith G (2014) Depression and anxiety in prostate cancer: a systematic review and meta-analysis of prevalence rates. BMJ Open 4(3):e003901. https://doi.org/10.1136/bmjopen-2013-003901

    Article  PubMed  PubMed Central  Google Scholar 

  2. APA (2013) Diagnostic and statistical manual of mental disorders-5. American Psychiatric Association, Washington, DC

    Google Scholar 

  3. Jayadevappa R, Malkowicz S, Chhatre S, Johnson J, Gallo J (2011) The burden of depression in prostate cancer. Psycho-Oncology 21:1338–1345. https://doi.org/10.1002/pon.2032

    Article  PubMed  Google Scholar 

  4. Linden W, Vodermaier A, MacKenzie R, Greig D (2012) Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. J Affect Disord 141:343–351

    Article  PubMed  Google Scholar 

  5. Sharpley C, Christie D (2007) An analysis of the psychometric structure and frequency of anxiety and depression in Australian men with prostate cancer. Psycho-Oncology 16:660–667

    Article  PubMed  Google Scholar 

  6. Fries E, Hesse J, Hellhammer J, Hellhammer D (2005) A new view on hypocortisolism. Psychoneuroendocrinology 30:1010–1016

    Article  PubMed  CAS  Google Scholar 

  7. Lane J, Adcock R, Burnett R (1992) Respiratory sinus arrhythmia and cardiovascular responses to stress. Psychophysiology 29:461–470

    Article  PubMed  CAS  Google Scholar 

  8. Lu B, Nagappan G, Guan X, Nathan P, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416. https://doi.org/10.1038/nrn3505

    Article  PubMed  CAS  Google Scholar 

  9. Groves JO (2007) Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry 1–10

  10. Vinberg M, Trajkovska V, Bennike B, Knorr U, Knudsen G, Kessing L (2009) The BDNF Val66Met polymorphism: relation to familiar risk of affective disorder, BDNF levels and salivary cortisol. Psychoneuroendocrinology 34:1380–1389

    Article  PubMed  CAS  Google Scholar 

  11. Hosang G, Shiles C, Tansey K, McGuffin P, Uher R (2014) Interaction between stress and the BDNF Val66Met polymorhism in depression: a systematic review and meta-analysis. BMC Med 12:1–11

    Article  CAS  Google Scholar 

  12. Jopp D, Rott C (2006) Adaptation in very old age: exploring the role of resources, beliefs, and attitudes for centenarians’ happiness. Psychol Aging 21(2):266–280. https://doi.org/10.1037/0882-7974.21.2.266

    Article  PubMed  Google Scholar 

  13. Karoly P, Reuhlman L (2006) Psychological resilience and its correlates in chronic pain. Pain 123:90–97

    Article  PubMed  Google Scholar 

  14. Sharpley C, Bitsika V, Wooten A, Christie D (2014) Does resilience “buffer” against depression in prostate cancer patients? A multi-site replication. Eur J Cancer Care 23:545–552

    Article  CAS  Google Scholar 

  15. Charney DS (2004) Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Focus 2(3):368–391

    Article  Google Scholar 

  16. Luthar S, Cicchetti D (2000) The construct of resilience: implications for interventions and social policies. Dev Psychopathol 12:857–885

    Article  PubMed Central  PubMed  Google Scholar 

  17. Vyas A, Bernal S, Chattarji S (2003) Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965(1–2):290–294. https://doi.org/10.1016/s0006-8993(02)04162-8

    Article  PubMed  CAS  Google Scholar 

  18. Vyas A, Jadhav S, Chattarji S (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143(2):387–393. https://doi.org/10.1016/j.neuroscience.2006.08.003

    Article  PubMed  CAS  Google Scholar 

  19. Chrousos G (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381

    Article  PubMed  CAS  Google Scholar 

  20. Chrousos G, Gold PW (1998) A healthy body in a healthy mind--and vice versa—the damaging power of “uncontrollable” stress. J Clin Endocrinal Metab 83(6):1842–1845. https://doi.org/10.1210/jc.83.6.1842

    Article  CAS  Google Scholar 

  21. Chaby L, Cavigelli S, Hirrlinger A, Caruso M, Braithwaite V (2015) Chronic unpredictable stress during adolescence causes long-term anxiety. Behav Brain Res 278:492–495. https://doi.org/10.1016/j.bbr.2014.09.003

    Article  PubMed  CAS  Google Scholar 

  22. Pruessner J, Wold O, Hellhammer D, Buske-Kirschbaum A, von Auer K, Jobst S, Kaspers F, Kirschbaum C (1997) Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sci 61:1539–1549

    Article  Google Scholar 

  23. Tabor H, Risch N, Myers R (2001) Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3:391–397

    Article  CAS  Google Scholar 

  24. Schillani G, Era D, Cristante T, Mustacchi G, Richiardi M, Grassi L, Giraldi T (2012) 5-HTTLPR polymorphism and anxious preoccupation in early breast cancer patients. Radiol Oncol 46:321–327

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koh M, Jeung H-C, Namkoong K, Chung H, Kang J (2014) Influence of the BDNF Val66Met polymorphism on coping response to stress in patients with advanced gastric cancer. J Psychosom Res 77(1):76–80. https://doi.org/10.1016/j.jpsychores.2014.04.008

    Article  PubMed  Google Scholar 

  26. Santoro M, Nociti V, De Fino C, Caprara A, Giordano R, Palomba N, Losavio F, Marra C, Patanella A, Mirabella M, Gainotti G, Quaranta D (2016) Depression in multiple sclerosis: effect of brain derived neurotrophic factor Val66Met polymorphism and disease perception. Eur J Neurol 23(3):630–640. https://doi.org/10.1111/ene.12913

    Article  PubMed  CAS  Google Scholar 

  27. Spitzer R, Kroenke K, Williams J, Lowe B (2006) A brief measure for assessing generalised anxiety disorder. Arch Intern Med 166:1092–1097

    Article  PubMed  Google Scholar 

  28. Kroenke K, Spitzer R, Williams J (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16:606–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Connor K, Davidson J (2003) Development of a new resilience scale: the Connor-Davidson resilience scale (CD-RISC). Depress Anxiety 18:76–82

    Article  PubMed  Google Scholar 

  30. Aardal E, Holmes A-C (1995) Cortisol in saliva: references ranges and relation to cortisol in serum. Eur J Clin Chem Clin Biochem 33:927–932

    PubMed  CAS  Google Scholar 

  31. Hek K, Direk N, Newson R, Hofman A, Hoogendijk W, Mulder C, Tiemeier H (2013) Anxiety disorders and salivary cortisol levels in older adults: a population-based study. Psychoneuroendocrinology 38:300–305

    Article  PubMed  CAS  Google Scholar 

  32. Power C, Li L, Hertzman C (2006) Associations of early growth and adult adiposity with patterns of salivary cortisol in adulthood. J Clin Endocrinol Metab 91:4264–4270

    Article  PubMed  CAS  Google Scholar 

  33. Choi M, Kang R, Lim S, Oh K, Lee M (2006) Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res 1118:176–182

    Article  PubMed  CAS  Google Scholar 

  34. DeVillis R (2003) Scale development: theory and applications, 2nd edn. Allen & Unwin, Sydney

    Google Scholar 

  35. Haglund MEM, Nestadt PS, Cooper NS, Southwick SM, Charney DS (2007) Psychobiological mechanisms of resilience: relevance to prevention and treatment of stress-related psychopathology. Dev Psychopathol 19:889–920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher F. Sharpley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharpley, C.F., Christie, D.R.H., Bitsika, V. et al. Comparing a genetic and a psychological factor as correlates of anxiety, depression, and chronic stress in men with prostate cancer. Support Care Cancer 26, 3195–3200 (2018). https://doi.org/10.1007/s00520-018-4183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-018-4183-4

Keywords

Navigation