Skip to main content
Log in

Evaluation of the clinical relevance of vancomycin for the treatment of Lyme disease

  • Lyme Borreliosis
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Vancomycin is active in vitro and in vivo in mouse systems against Lyme disease borrelia; however, there are no published data on the efficacy of vancomycin in patients with Lyme disease and no convincing theoretical advantages of vancomycin over the currently used and highly effective orally administered antimicrobial agents, including doxycycline, amoxicillin and cefuroxime axetil. In addition, vancomycin may cause a wide variety of potentially serious adverse effects and requires the placement of an intravenous catheter. It is concluded that vancomycin is a much less attractive option for the treatment of patients with early Lyme disease (or any other manifestation of Lyme disease), compared with the antimicrobials currently being used. Based on available evidence, clinical studies to evaluate the safety and efficacy of vancomycin for Lyme disease cannot be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2006;43:1089–134.

    Article  PubMed  Google Scholar 

  2. Ljøstad U, Skogvoll E, Eikeland R, Midgard R, Skarpaas T, Berg A, et al. Oral doxycycline versus intravenous ceftriaxone for European Lyme neuroborreliosis: A multicenter, non-inferiority, double-blind, randomized trial. Lancet Neurol. 2008;7(8):690–5.

    Article  PubMed  Google Scholar 

  3. Wormser GP, Halperin JJ. Oral doxycycline for neuroborreliosis. Lancet Neurol. 2008;7:665–6.

    Article  PubMed  Google Scholar 

  4. Kazragis RJ, Dever LL, Jorgensen JH, Barbour AG. In vivo activities of ceftriaxone and vancomycin against Borrelia spp. in the mouse brain and other sites. Antimicrob Agents Chemother. 1996;40:2632–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu X, Sharma B, Niles S, O’Connor K, Schilling R, Matluck N, et al. Identifying vancomycin as an effective antibiotic for killing Borrelia burgdorferi. Antimicrob Agents Chemother. 2018;62:e01201-18. https://doi.org/10.1128/AAC.01201-18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harman MW, Hamby AE, Boltyanskiy R, Belperron AA, Bockenstedt LK, Kress H, et al. Vancomycin reduces cell wall stiffness and slows swim speed of the Lyme disease bacterium. Biophys J. 2017;112:746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dever LL, Jorgensen JH, Barbour AG. In vitro activity of vancomycin against the spirochete Borrelia burgdorferi. Antimicrob Agents Chemother. 1993;37:1115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hunfeld K‑P, Weigand J, Wichelhaus TA, Kekoukh E, Kraiczy P, Brade V. In vitro activity of mezlocillin, meropenem, aztreonam, vancomycin, teicoplanin, ribostamycin, and fusidic acid against Borrelia burgdorferi. Int J Antimicrob Agents. 2001;17:203–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sartakova ML, Dobrikova EY, Terekhova DA, Devis R, Bugrysheva JV, Morozova OV, et al. Novel antibiotic-resistance markers in pGK-12-derived vectors for Borrelia burgdorferi. Gene. 2003;303:131–7.

    Article  CAS  PubMed  Google Scholar 

  10. Sharma B, Brown AV, Matluck NE, Hu LT, Lewis K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persistor cells. Antimicrob Agents Chemother. 2015;59:4616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 28th ed. Wayne: CLSI; 2018. CLSI Supplement M100.

    Google Scholar 

  12. Bruniera FR, Ferreira FM, Saviolli LR, Bacci MR, Feder D, da Luz Gonçalves Pedreira M, et al. The use of vancomycin with its therapeutic and adverse effects: A review. Eur Rev Med Pharmacol Sci. 2015;19(4):694–700.

    CAS  PubMed  Google Scholar 

  13. Barbour AG. Borreliaceae. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S, editors. Bergey’s manual of systematics of archaea and bacteria. 2018. https://doi.org/10.1002/9781118960608.fbm00308.

    Chapter  Google Scholar 

  14. Docobo-Pérez F, López-Rojas R, Domínguez-Herrera J, Jiménez-Mejias ME, Pichardo C, Ibáñez-Martínez J, et al. Efficacy of linezolid versus a pharmacodynamically optimized vancomycin therapy in an experimental pneumonia model caused by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2012;67:1961–7.

    Article  PubMed  Google Scholar 

  15. Placencia FX, Kong L, Weisman LE. Treatment of methicillin-resistant Staphylococcus aureus in neonatal mice: Lysostaphin versus vancomycin. Pediatr Res. 2009;65(4):420–4.

    Article  CAS  PubMed  Google Scholar 

  16. Lepak AJ, Zhao M, Andes DR. Comparative pharmacodynamics of telavancin and vancomycin in the neutropenic murine thigh and lung infection models against Staphylococcus aureus. Antimicrob Agents Chemother. 2017; https://doi.org/10.1128/AAC.00281-17.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Louie A, Boyne MT II, Patel V, Huntley C, Liu W, Fikes S, et al. Pharmacodynamic evaluation of the activities of six parenteral vancomycin products available in the United States. Antimicrob Agents Chemother. 2015;59:622–32.

    Article  PubMed  Google Scholar 

  18. Dominguez-Herrera J, Lopez-Rojas R, Smani Y, Labrador-Herrera G, Pachon J. Efficacy of ceftaroline versus vancomycin in an experimental foreign-body and systemic infection model caused by bio-film producing methicillin-resistant Staphylococcus epidermidis. Int J Antimicrob Agents. 2016;48:661–5.

    Article  CAS  PubMed  Google Scholar 

  19. Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum A‑M, van den Broek P, Mattie H. Anti-staphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother. 1990;34:1869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moise PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus respiratory tract infections. Clin Pharmacokinet. 2004;43:925–42.

    Article  Google Scholar 

  21. Sakoulas G, Geriak M, Nizet V. Is a reported penicillin allergy sufficient grounds to forego the multidimensional antimicrobial benefits of β‑lactam antibiotics? Clin Infect Dis. 2019;68(1):157–64. https://doi.org/10.1093/cid/ciy557.

    Article  CAS  PubMed  Google Scholar 

  22. Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: A re-evaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53:483–6.

    Article  CAS  PubMed  Google Scholar 

  23. Beach JE, Perrott J, Turgeon RD, Ensom MHH. Penetration of vancomycin into the cerebrospinal fluid: A systematic review. Clin Pharmacokinet. 2017;56(12):1479–90.

    Article  CAS  PubMed  Google Scholar 

  24. Luft BJ, Steinman CR, Neimark HC, Muralidhar B, Rush T, Finkel MF, et al. Invasion of the central nervous system by Borrelia burgdorferi in acute disseminated infection. JAMA. 1992;267:1364–7.

    Article  CAS  PubMed  Google Scholar 

  25. Dattwyler RJ, Luft BJ, Kunkel MJ, Finkel MF, Wormser GP, Rush TJ, et al. Ceftriaxone compared with doxycycline for the treatment of acute disseminated Lyme disease. N Engl J Med. 1997;337:289–94.

    Article  CAS  PubMed  Google Scholar 

  26. Wormser GP, Ramanathan R, Nowakowski J, McKenna D, Holmgren D, Visintainer P, et al. Duration of antibiotic therapy for early Lyme disease. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2003;138:697–704.

    Article  CAS  PubMed  Google Scholar 

  27. Nowakowski J, Nadelman RB, Sell R, McKenna D, Cavaliere FC, Holmgren D, et al. Long-term follow-up of patients with culture-confirmed Lyme disease. Am J Med. 2003;115:91–6.

    Article  PubMed  Google Scholar 

  28. Weitzner E, McKenna D, Nowakowski J, Scavarda C, Dornbush R, Bittker S, et al. Long-term assessment of post-treatment symptoms in patients with culture-confirmed early Lyme disease. Clin Infect Dis. 2015;61:1800–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wormser GP, Schwartz I. Antibiotic treatment of animals infected with Borrelia burgdorferi. Clin Microbiol Rev. 2009;22:387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wormser GP, O’Connell S, Pachner AR, Schwartz I, Shapiro ED, Stanek G, et al. Critical analysis of a doxycycline treatment trial of rhesus macaques infected with Borrelia burgdorferi. Diagn Microbiol Infect Dis. 2018;92:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hansen K, Hovmark A, Lebech A‑M, Lebech K, Olsson I, Halkier-Sørensen L, et al. Roxithromycin in Lyme borreliosis: Discrepant results of an in vitro and in vivo animal susceptibility study and a clinical trial in patients with erythema migrans. Acta Derm Venereol. 1992;72(4):297–300.

    CAS  PubMed  Google Scholar 

  32. Cadavid D, Barbour AG. Neuroborreliosis during relapsing fever: Review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin Infect Dis. 1998;26:151–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Lisa Giarratano for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary P. Wormser M.D..

Ethics declarations

Conflict of interest

G.P. Wormser reports receiving research grants from Immunetics, Inc., Institute for Systems Biology, Rarecyte, Inc., and Quidel Corporation. He owns equity in Abbott/AbbVie; has been an expert witness in malpractice cases involving Lyme disease; and is an uncompensated board member of the American Lyme Disease Foundation. A.G. Barbour reports current receipt of research grants from the National Institutes of Health and the Office of the Assistant Secretary of Defense for Health Affairs, receipt of patent licensing royalties from the University of California for co-inventorship of a method for Lyme disease diagnostic testing, and uncompensated board membership of the American Lyme Disease Foundation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wormser, G.P., Barbour, A.G. Evaluation of the clinical relevance of vancomycin for the treatment of Lyme disease. Wien Klin Wochenschr 135, 185–189 (2023). https://doi.org/10.1007/s00508-019-1505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-019-1505-6

Keywords

Navigation