Skip to main content
Log in

Automatic EMI filter design for three-phase PWM inverter used in automotive transmission

Automatisierte EMI-Filterauslegung von dreiphasigen PWM-Wechselrichtern für den Einsatz in Fahrzeuggetrieben

  • Originalarbeit
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

Over the last few years, the automotive industry has been moving toward pollutant-free and economically sustainable alternatives due to increased regulations concerning CO2 emissions. The hybrid and pure electric transmissions have been proposed to not violate these constraints.

The use of new electrical and electronic components has led to new challenges in terms of space optimisation. Various synthesis tools have been developed over the years for electric and hybrid transmissions to analyse these new solutions thoroughly and effectively.

At times, the components are calculated through databases and are standardised and not developed for the specific case which causes an oversize of the parts.

The size of the Electro-Magnetic Interference Suppression Filter (EMI filter) can contribute up to 30% of the inverter’s total size and weight. Therefore, designing a filter with high-power density and small volume is fundamental. The purpose of this paper is to create an algorithm capable of evaluating the physical and geometric characteristics of an EMI filter, varying the conditions of use. Furthermore, the algorithm can consider geometric constraints.

Zusammenfassung

Aufgrund der immer strenger werdenden gesetzlichen Rahmenbedingungen bezüglich CO2-Emissionen befindet sich die Automobilindustrie im Wandel. Um diese gesetzlichen Vorgaben zu erfüllen, werden die Fahrzeuge zunehmend elektrifiziert.

Der damit einhergehende Anteil elektrischer und elektronischer Komponenten im Antrieb führt zu neuen Herausforderungen im Bereich der geometrischen Integration. Um den sich hierbei ergebenden Lösungsraum effizient und vollständig bewerten zu können, wurden in den letzten Jahren verschiedene Algorithmen zur Auslegung dieser Komponenten entwickelt.

Diese Auslegungsroutinen bedienen sich standardisierter Datenbanken, um die Komponenten zu dimensionieren, was dazu führt, dass diese überdimensioniert sind.

Die Größe des Filters zur Unterdrückung elektromagnetischer Interferenz (EMI) kann bis zu 30% des Umrichtergewichts und –volumen ausmachen. Aus diesem Grund ist eine Leistungsdichte und kompakte Auslegung des Filters unabdingbar. In diesem Paper wird ein Algorithmus vorgeschlagen, der es ermöglicht, die physikalischen und geometrischen Eigenschaften eines EMI-Filters unter Berücksichtigung frei wählbarer Anforderungen zu bewerten. Zusätzlich können geometrische Randbedingungen berücksichtigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Grobler, I., Gitau, M. N. (2017): Modelling and measurement of high-frequency conducted electromagnetic interference in DC–DC converters. IET Sci. Meas. Technol., 11, 495–503.

    Article  Google Scholar 

  2. Boillat, D. O., Krismer, F., Kolar, J. W., Filter, E. M. I. (2017): Volume minimization of a three-phase, three-level T-type PWM converter system. IEEE Trans. Power Electron., 32(4), 2473–2480.

    Article  Google Scholar 

  3. Wang, F., Shen, W., Boroyevich, D., Ragon, S., Stefanovic, V., Arpilliere, M. (2006): Design optimization of industrial motor drive power stage using genetic algorithms. In Proceedings of the IEEE industry applications conference, 8–12 October 2006. Tampa, FL, USA (pp. 2581–2586).

    Google Scholar 

  4. Raggl, K., Nussbaumer, T., Kolar, J. W. (2010): Guideline for a simplified differential-mode EMI filter design. IEEE Trans. Ind. Electron., 57, 1031–1040.

    Article  Google Scholar 

  5. Filomeno, G., Krüger, B., Tenberge, P., Dennin, D. (2020): Automatization of pin fin heat sink design with geometric and fluid constraints. Int. J. Mech. Eng. Robot. Res., 9(5), 652–657. https://doi.org/10.18178/ijmerr.9.5.652-657.

    Article  Google Scholar 

  6. Filomeno, G., Krüger, B., Tenberge, P., Dennin, D. (2020): Rapid electric motor sizing estimation for automotive application with statistical approach using catalog values. Int. J. Mech. Eng. Robot. Res., 9(11), 1457–1462. https://doi.org/10.18178/ijmerr.9.11.1457-1462.

    Article  Google Scholar 

  7. Manushyn, I. (2019): In Design and optimization of EMI filters for power electronics systems, Darmstadt: Technische Universität Darmstadt.

    Google Scholar 

  8. Giglia, G., Ala, G., Di Piazza, M. C., Giaconia Luna Massimiliano, G. C., Vitale, G., Zanchetta, P. (2018): Automatic EMI filter design for power electronic converters oriented to high power density. Electronics, 7, 9. https://doi.org/10.3390/electronics7010009.

    Article  Google Scholar 

  9. Foong, S. K., Lim, C. H. (2002): On the capacitance of a rolled capacitor. Phys. Educ., 37(5), 429.

    Article  Google Scholar 

  10. Montanari, D., Saarien, K., Scagliarini, F., Zeidler, D., Niskala, M., Nender, C. (2009): Film capacitors for automotive and industrial applications. In CARTS USA 2009, 29th symposium for passive electronics, Jacksonville, FL, USA.

    Google Scholar 

  11. Petrovic, M. M. V., Bobic, J. D., Stojanovic, B. D. (2008): History and challenges of barium titanate: part II. Sci. Sinter., 40(3), 235–244. https://doi.org/10.2298/SOS0803235V.

    Article  Google Scholar 

  12. Ceramic dielectric capacitors classes I, II, III and IV – part I: characteristics and requirements, EIA Standard, November 2002.

  13. Kishi, H., Mizuno, Y., Chazono, H. (2003): Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys., 42, 1–15.

    Article  Google Scholar 

  14. Keimasi, M. (2007): Flex cracking and temperature-humidity-bias effects on reliability of multilayer ceramic capacitors, Center for Advanced Life Cycle Engineering, University of Maryland, USA.

  15. Mikkenie, R. (2011): Materials development for commercial multilayer ceramic capacitor. Ph.D. Thesis, University of Twente.

  16. Cava, R. J. (2001): Dielectric materials for applications in microwave communications. J. Mater. Chem., 11(1), 54–62.

    Article  Google Scholar 

  17. Choi, J. H., Kim, J., Lee, B. T., Kim, Y. M., Moon, J. H. (2000): Microwave dielectric properties of Ba-Nd-Ti-O system doped with metal oxides. Mater. Lett., 44(1), 29–34.

    Article  Google Scholar 

  18. Fiedziuszko, S. J., Hunter, I. C., Itoh, T., Kobayashi, Y., Nishikawa, T., Stitzer, S. N., Wakino, K. (2002): Dielectric materials, devices, and circuits. IEEE Trans. Microw. Theory Tech., 50(3), 706–720.

    Article  Google Scholar 

  19. Wakino, K., Nishikawa, T., Ishikawa, Y., Tamura, H. (1990): Dielectric resonator materials and their applications for mobile communication-systems. Br. Ceram., Trans. J., 89(2), 39–43.

    Google Scholar 

  20. Kell, R. C., Greenham, A. C., Olds, G. C. E. (1973): High permititivity temperature-stable ceramic dielectrics with low microwave loss. J. Am. Ceram. Soc., 56(7), 352–354.

    Article  Google Scholar 

  21. Suvorov, D., Valent, M., Kolar, D. (1997): The role of dopants in tailoring the microwave properties of Ba6-xR8+2/3xTi18O54 R = (La-Gd) ceramics. J. Mater. Sci., 32(24), 6483–6488.

    Article  Google Scholar 

  22. Kumar, M., Agarwal, V. (2006): Power line filter design for conducted electromagnetic interference using time-domain measurements. IEEE Trans. Electromagn. Compat., 48, 178–186.

    Article  Google Scholar 

  23. Yoann, M. Y. (2008): High-Density Discrete Passive EMI Filter Design for Dc-Fed Motor Drives, Master Thesis, Dept. of Elect. Eng., Virginia Polytechnic Institute and State University.

  24. SAE AS 1831:1997 (R2010) Characteristics and Utilization of Electrical Power, 270 V DC, Aircraft.

  25. Requirements for the control of electromagnetic interference characteristics of subsystem and equipment, Military Standard 461F, Dec. 2007.

  26. “SAE AS 1831:1997 (R2010) Characteristics and Utilization of Electrical Power, 270 V DC”.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Filomeno.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filomeno, G., Krüger, B., Tenberge, P. et al. Automatic EMI filter design for three-phase PWM inverter used in automotive transmission. Elektrotech. Inftech. 138, 110–116 (2021). https://doi.org/10.1007/s00502-021-00870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00502-021-00870-9

Keywords

Schlüsselwörter

Navigation