Skip to main content
Log in

Utilization of Experimental Data as Boundary Conditions for the Solidification Model Tempsimu-3D

Verwendung von experimentellen Daten als Randbedingungen für das Erstarrungsmodell Tempsimu-3D

  • Originalarbeit
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Abstract

Solidification models are an important tool for the prediction of temperatures and shell growth during the process of continuous casting of steel. To gain reliable simulation results, it is crucial to use highly sophisticated material data and boundary conditions depending on different process parameters. The focus of this work lies on the utilization of experimental data to describe the secondary cooling zone (SCZ) of a slab caster in the solidification model Tempsimu-3D. In this part of the caster, water and air-mist sprays are used to cool down the strand. To calculate the heat transfer coefficient caused by spray cooling (HTCspray), the model uses a correlation between the water impact density (WID) and the surface temperature of the slab. Together with the heat removal due to roll contact and radiation, this HTCspray is applied as a boundary condition for the SCZ. To adjust the parameters of the correlation formula, results from WID and HTC measurements are used. For validation, the simulation results are compared with a measurement of the slab surface temperature.

Zusammenfassung

Erstarrungsmodelle sind ein wichtiges Werkzeug für die Vorhersage von Temperatur und Schalenwachstum beim Stranggießen von Stahl. Um verlässliche Simulationsergebnisse zu erhalten, werden akkurate Materialdaten und Randbedingungen in Abhängigkeit der verwendeten Prozessparameter benötigt. Der Fokus dieses Beitrags liegt auf der Aufbereitung von experimentellen Daten zur Beschreibung der Sekundärkühlzone einer Brammenstranggießanlage im Erstarrungsmodell Tempsimu-3D. In diesem Anlagenteil werden Ein- und Zweistoffdüsen eingesetzt, um den Strang kontrolliert abzukühlen. Zur Berechnung des Wärmeübergangskoeffizienten durch Spritzwasserkühlung (HTCspray) verwendet das Modell eine Korrelation aus Wasserbeaufschlagungsdichte (WID) und Oberflächentemperatur. Dieser HTCspray wird zusammen mit der Wärmeabfuhr durch Stützrollenkontakt und Strahlung als Randbedingung in der Sekundärkühlzone verwendet. Die Ermittlung der Korrelationsparameter wurde mit Hilfe von WID und HTC Messungen durchgeführt. Das Modell wurde mit gemessenen Brammenoberflächentemperaturen validiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomas, B. G.: Review on Modeling and Simulation of Continuous Casting, steel research int., 89 (2018), pp 1–21

    Article  Google Scholar 

  2. Sengupta, J.; Thomas, B.; Wells M. A.: Understanding the Role Water-cooling plays during Continuous Casting of Steel and Aluminum Alloys, Materials Science and Technology: AIST/TMS Proceedings, New Orleans, LA, United States, 2004

    Google Scholar 

  3. Long, M.; Chen, D.: Study on Mitigating Center Macro-Segregation During Steel Continuous Casting Process, steel research international, 82 (2011), no. 7, pp 847–856

    Article  Google Scholar 

  4. Brimacombe, J. K.; Sorimachi, K.: Crack Formation in the Continuous Casting of Steel, Metallurgical and Materials Transactions B, 8B (1977), pp 489–505

    Article  Google Scholar 

  5. Schwerdtfeger, K.: Metallurgie des Stranggießens, Verlag Stahleisen mbH, Düsseldorf, Germany, 1992

    Google Scholar 

  6. Horsky, J.: Measurement of heat transfer characteristics of secondary cooling in continuous casting, Metal 2015: Conference proceedings, Brno, Czech Republic, 2015

    Google Scholar 

  7. Wendelstorf, J.; Spitzer, K. H.; Wendelstorf, R.: Spray water cooling heat transfer at high temperatures and liquid mass fluxes, International Journal of Heat and Mass Transfer, 51 (2008), no. 19–20, pp 4902–4910

    Article  Google Scholar 

  8. Jeschar, R.; Reiners, U.; Scholz, R.: Wärmeübergang bei der zweiphasigen Spritzwasserkühlung, Wärme Gas International, 33 (1984), no. 6/7, pp 299–308

    Google Scholar 

  9. Puschmann, F.: Experimentelle Untersuchung der Spraykühlung zur Qualitätsverbesserung durch definierte Einstellung des Wärmeübergangs, Diss., Magdeburg, Otto-von-Guericke-Universität Magdeburg, Fakultät für Verfahrens- und Systemtechnik, 2003

  10. Ramstorfer, F.; Chimani, C.: Influence of air / water volume ratio on the spray cooling heat transfer coefficient of air-mist nozzles, SteelSim Conference 2009: Conference proceedings, Leoben, Austria, 2009

    Google Scholar 

  11. Preuler, L.; Bernhard, C.; Ilie, S.; Six, J.: Experimental Investigations on spray characteristics of water/air nozzles, ECCC 2017: Conference proceedings, Vienna, Austria, 2017

    Google Scholar 

  12. Miettinen, J.; Louhenkilpi, S.; Visuri, V. V.; Heikkinen, E. P.; Jokilaakso, A.: Advances in Modeling of Steel Solidification with IDS, ICASP5-CSSCR5—5th International Conference on Advances in Solidification Processes: Conference proceedings, Salzburg, Austria, 2019

    Book  Google Scholar 

  13. Hibbeler, L. C.; Chin See, M. M.; Iwasaki, J.; Swartz, K. E.; O’Malley, R. J.; Thomas, B. G.: A reduced-order model of mould heat transfer in the continuous casting of steel, Applied Mathematical Modelling, 40 (2016), pp 8530–8551

    Article  Google Scholar 

  14. Casim Consulting Oy: Tempsimu User Manual, Vers. 3.0.037, 2018

  15. Nukiyama, S.: The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure, Int. J. Heat Mass Transfer, 27 (1984), no. 7, pp 959–970

    Article  Google Scholar 

  16. Xia, G.; Schiefermueller, A.: The Influence of Support Rollers of Continuous Casting Machines on Heat Transfer and on Stress-Strain in Secondary Cooling, steel research int., 81 (2010), no. 8, pp 652–659

    Article  Google Scholar 

  17. Gilles, H. L.: The Making, Shaping and Treating of Steel, Casting Volume, Primary and Secondary Cooling Control, 11. ed., Pittsburgh, PA: Association for Iron and Steel Technology, 2003

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding support of K1-MET GmbH, metallurgical competence center. The research program of the K1-MET competence center is supported by COMET (Competence Center for Excellent Technologies), the Austrian program for competence centers. COMET is funded by the Federal Ministry for Transport, Innovation and Technology, the Federal Ministry for Science, Research and Economy, the provinces of Upper Austria, Tyrol and Styria as well as the Styrian Business Promotion Agency (SFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Preuler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preuler, L., Louhenkilpi, S., Bernhard, C. et al. Utilization of Experimental Data as Boundary Conditions for the Solidification Model Tempsimu-3D. Berg Huettenmaenn Monatsh 165, 237–242 (2020). https://doi.org/10.1007/s00501-020-00970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00501-020-00970-7

Keywords

Schlüsselwörter

Navigation