Skip to main content
Log in

State of the Art in Rolling Process Modelling

Die modernsten Methoden der Walzprozessmodellierung

  • Originalarbeit
  • Published:
BHM Berg- und Hüttenmännische Monatshefte Aims and scope Submit manuscript

Abstract

Pushed forward by mill complexification and harder product quality requirements, the mathematical treatment has evolved into very complex, multi-coupled models: roll deformation, thermal transfer, lubrication, and oxide scales are a few examples. The diversity of rolled products and rolling mills makes rolling process modelling a vast field indeed. Beyond general, necessarily very costly models, partial descriptions are developed for more targeted goals. Three methods share the market: the Slab Method (SM), the Upper Bound Method (UBM), and the Finite Element Method (FEM). A few modelling strategies based on the above three are described, providing accurate solutions in an industry-compatible computation time: steady-state FEM modelling; faster 2D SM with large roll flattening to build thin sheet or temper rolling force models; low-cost 3D roll stack deformation package for profile/flatness of sheets; FEM results-based UBM models of width variations in the Tandem Cold Mill; post-bite profile and flatness evolution (interstand behavior); FEM description of oxide scale behavior in descaling; SM with modern lubrication modelling. Evolutions of rolling processes are questioned to point to new demands on modelling and how to answer them.

Zusammenfassung

Getrieben durch die steigende Komplexität der Walzwerke und härteren Produktanforderungen haben sich für die mathematische Beschreibung sehr komplexe, multipel-gekoppelte Modelle entwickelt: Walzenverformung, Wärmeübergang, Schmierung und Zunderschichten sind einige Beispiele. Die Vielfalt von Walzprodukten und Walzwerken macht Walzprozessmodellierung in der Tat zu einem breiten Feld. Zusätzlich zu den im Allgemeinen sehr kostspieligen Modellen wurden Teildarstellungen für spezifische Zwecke entwickelt. Drei Methoden teilen sich den Markt: die Slab-Methode (SM), die Upper-Bound-Methode (UBM) und die Finite-Elemente-Methode (FEM). Basierend auf den drei oben beschriebenen Methoden bieten einige Modellierungsstrategien, präzise Lösungen in einer industrietauglichen Rechenzeit: Steady-State-FEM-Modellierung; 2D-SM mit großen Rollenabflachungen, um schneller Modelle für dünnes Blech oder Dressierwalzen zu bauen; Low-Cost-3D-Pakete für Walzgerüste für Profil/Planheit von Bändern; FEM ergebnisorientierte UBM Modelle für Breitenschwankungen in der Tandemstraße; Entwicklung nach dem Walzstich für Profil und Planheit (Verhalten des Zwischengerüstzugs); FEM zur Beschreibung des Verhaltens der Oxidzunderschicht beim Entzundern; SM mit modernen Schmiermodellierungen. Die Entwicklungen von Walzprozessen werden untersucht, um neue Anforderungen an die Modellierung zu zeigen und wie diese zu bewältigen sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. von Kármán, T.: Beitrag zur Theorie des Walzvorganges, Z. Angew. Math. Mech., 5 (1925), pp 139–141

    Google Scholar 

  2. Orowan, E.: The calculation of roll pressure in hot and cold flat rolling, Proc. Instn. Mech. Engrg., 150 (1943), pp 140–167

    Article  Google Scholar 

  3. Oh, S. I.; Kobayashi, S.: An approximate method for a three-dimensional analysis of rolling, Int. J. Mech. Sci., 17 (1975), no. 4, pp 293–305

    Google Scholar 

  4. Mori, K.; Osakada, K.: Simulation of 3D deformation in rolling by the FEM, Int. J. Mech. Sci., 26 (1984), no. 9–10, pp 515–525

  5. Huisman, H. J.; Huétink, J.: A combined Eulerian–Lagrangian 3D FEM analysis of edge-rolling, J. Mech. Working Technol., 11 (1985), pp 333–353

  6. Chenot, J.-L.; Montmitonnet, P.; Bern, A.; Bertrand-Corsini, C.: A method for determining free surfaces in steady state finite element computations, Comput. Meth. Appl. Mech. Engrg., 92 (1991), 2, pp 245–260

    Article  Google Scholar 

  7. Kim, T. H.; Lee, W.H.; Hwang, S. M.: An integrated FE process model for the prediction of strip profile in flat rolling, ISIJ Int., 43 (2003), no. 12, pp 1947–1956.

    Google Scholar 

  8. Trull, M.; McDonald, D.; Richardson, A.; Farrugia, D. C. J.: Advanced finite element modelling of plate rolling operations, J. Mat. Proc. Tech., 177 (2006), pp 513–516.

    Article  Google Scholar 

  9. Lee, Y. S.; Dawson, P. R.; Dewhurst, T. B.: Bulge prediction in steady state bar rolling, Proceedings, NUMIFORM 89, Fort Collins, USA, 1989, pp 323–330

  10. Hacquin, A.: 3D thermomechanical modelling of rolling processes: coupling strip and rolls, PhD Dissertation, Ecole des Mines de Paris, 1996 (in French)

  11. Vacance, M.; Massoni, E.; Chenot, J.-L.; Rovelli, C.; Cumino, G.; Lubrano, M.: Multistand pipe mill finite element model, J. Mat. Proc. Tech., 24 (1990), pp 421–430

    Article  Google Scholar 

  12. Ripert, U.; Fourment, L.; Chenot, J.-L.: An upwind Least Squares formulation for free surface calculation of viscoplastic steady state metal forming problems, Adv. Mod. Simul. Engg Sci., 2 (2015), 15

    Article  Google Scholar 

  13. Ngo, Q. T.: Thermo-elasto-plastic uncoupling model of width variation for online application in automotive cold rolling process, PhD Dissertation, University of Paris-Est, 2015 (in French)

  14. Yamada, Y.; Ogawa, S.; Hamauzu, S.; Kikuma, T.: 3D analysis of mandrel rolling using RP-FEM, Proceedings, NUMIFORM 89, Fort Collins, USA, 1992

  15. Forge®NxT 2016 Users’ Meeting programme http://www.transvalor.com/en/actualites/detail/forge-international-user-meeting-2016-newsletter.99.html (July 12th 2016)

  16. Deform Modules brochure, http://www.deform.com/products/deform-forming-modules/ (July 12th 2016)

  17. Jortner, D.; Osterle, J. F.; Zorowski, C. F.: An analysis of cold strip rolling, Int. J. Mech. Sci., 2 (1960), pp 179–194

    Article  Google Scholar 

  18. Grimble, M. J.; Fuller, M. A.; Bryant, G. F.: A non-circular arc force model for cold rolling, Int. J. Numer. Methods Eng., 12 (1978), pp 643–663

    Article  Google Scholar 

  19. Golten, J. W.: Analysis of cold rolling with particular reference to roll deformations, Swansea Doctoral Dissertation, The University of Wales, 1969

    Google Scholar 

  20. Krimpelstätter, K.: Non-circular arc temper rolling model considering radial and circumferential displacements, PhD dissertation, Linz University, Austria, 2005

  21. Meindl, W.: Roll flattening with consideration of shear contact stress, PhD Thesis, Linz University, Linz, Austria, 2001 (in German)

  22. Fleck, N. A.; Johnson, K. L.: Towards a new theory of cold rolling thin foil, Int. J. Mech. Sci., 29 (1987), no. 7, pp 507-524

    Google Scholar 

  23. Shigaki, Y.; Nakhoul, R.; Montmitonnet, P.: Numerical treatment of slipping/no-slip zones in cold rolling of thin sheets with heavy tool deformation, Lubricants, 3 (2015), pp 113–131

    Article  Google Scholar 

  24. Montmitonnet, P.; Wey, E.; Delamare, F.; Chenot, J. L.; Fromholz, C.; de Vathaire, M.: A mechanical model of cold rolling: influence of the friction law on roll flattening calculated by a Finite Element Method, Proceedings, 4th Int. Steel Rolling Conf., Deauville, France, 1987

  25. Matsumoto, H.: Elastic-Plastic theory of cold and temper rolling, Proceedings, 8th Int. Conf. Technology of Plasticity, Kobe, Japan, 2005, paper #359

  26. Yanagimoto , J.; Kiuchi, M.: 3D simulation system for coupled elastic/rigid plastic deformation of rolls and workpieces in strip rolling processes, Proceedings, NUMIFORM 92, Sophia-Antipolis, France, 1992

  27. Hacquin, A.; Montmitonnet, P.; Guillerault, J.-P.: A 3D semi-analytical model of rolling stand deformation with finite element validation, Eur. J. Mech. A (Solids), 17 (1998), no.1, pp 79–106

    Google Scholar 

  28. Berger, B.; Pawelski, O.; Funke, P.: Die elastische Verformung der Walzen von Vier-walzengerüste, Arch. Eisenhüttenwes., 47 (1976), pp 351–356

    Google Scholar 

  29. Montmitonnet, P.: Comparison of profile prediction models for strip rolling, Proceedings, IOM3 Int. Conf. ‘Achieving Profile & Flatness in Flat Products’, Birmingham, UK, 2006)

  30. Legrand, N.; Becker, B.; Roubin, C.: Towards a better width control in cold rolling of flat steel strip, Proceedings, Int. Steel Rolling Conf., Paris – La Défense, France, 2006

  31. Barata Marques, M. J. M.; Martins, P. A. F.: The use of dual stream functions in the analysis of 3D metal forming process, Int. J. Mech. Sci., 33 (1991), pp 313–323

    Article  Google Scholar 

  32. Kim, Y. K.; Kwak, W. J.; Shin, T. J.; Hwang, S. M.: A new model for the prediction of roll force and tension profiles in flat rolling, ISIJ Int., 50 (2010), 11, pp 1644–1652

    Article  Google Scholar 

  33. Zaepffel, D.; Montmitonnet, P.; Salle, R.; Barranx, V.: Post bite creep and thickness heterogeneities in slab hot rolling on a reversing single stand mill, Proceedings, 5th European Rolling Conference, London, UK, 2009

  34. Abdelkhalek, S.; Montmitonnet, P.; Legrand, N.; Buessler, P.: Coupled approach for flatness predictions in thin strip cold rolling, Int. J. Mech. Sci., 53 (2011), pp 651–675

    Article  Google Scholar 

  35. Fischer, F. D.; Friedl, N.; Noe, A.; Rammerstorfer, F. G.: A study on the buckling behaviour of strips and plates with residual stresses. Steel Res. Int., 76 (2005), pp 327–335

    Google Scholar 

  36. Abdelkhalek, S.; Zahrouni, H.; Legrand, N.; Potier-Ferry, M.: Post-buckling modelling for strips under tension and residual stresses using asymptotic numerical method, Int. J. Mech. Sci., 104 (2015), pp 126–137

    Article  Google Scholar 

  37. Counhaye, C.: Modélisation et contrôle industriel de la géométrie des aciers laminés à froid (modelling and industrial control of the geometry of cold rolled steels), PhD thesis, University of Liege, 2000 (in French)

  38. von Plötz, K.: Study of levelling of sheets, PhD dissertation, Leoben University, 1973

    Google Scholar 

  39. Dratz, B.; Nalewajk, V.; Bikard, J.; Chastel, Y.: Testing and modelling the behaviour of steel sheets for roll levelling applications, Int. J. Mater. Form, 2 (2009), Suppl 1, pp 519–522

  40. Park, K. C.; Hwang, S. M.: Development of a FE analysis program of roller levelling and application for removing blanking bow defect of thin steel sheet, ISIJ Int., 42 (2002), no. 9, pp 990–999

    Google Scholar 

  41. Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.: Finite Element simulation of the edge-trimming/cold rolling sequence, Analysis of edge cracking, J. Mat. Proc. Tech., 212 (2012), pp 1049–1060

    Article  Google Scholar 

  42. Krzyzanowski, M.; Beynon, J. H.; Farrugia, D. C. J.: Oxide Scale Behavior in High Temperature Metal Processing, Wiley, 2010

  43. Picqué, B.; Mouret, S.; Bouchard, P.-O.; Montmitonnet, P.; Picard, M.: Mechanical behaviour of iron oxide scale: experimental and numerical study, Wear, 260 (2006), pp 231–242

    Article  Google Scholar 

  44. Zhang, M. H.; Liu, B.; Boréan, J.-L.; Montmitonnet, P.: Oxide fracture mechanisms in descaling of steel strips on the Hot Strip Mill, Proceedings, 14th ESAFORM Conference, Belfast, Northern Ireland, UK, 2011, AIP Conf. Proc., 1353 (2011), pp 333–338

    Article  Google Scholar 

  45. Nagl, M. M.; Saunders, S. R. J.; Evans, W. T.; Hall, D. J.: The tensile failure of nickel oxide scales at ambient and at growth temperature, Corr. Sci., 35 (1993), no. 5–8, pp 965–969

    Google Scholar 

  46. Tsao, Y. H.; Sargent, L. B.: A mixed lubrication model for the cold rolling of metals, ASLE Transactions, 20 (1977), pp 55–63

    Article  Google Scholar 

  47. Sutcliffe, M. P. F.; Johnson, K. L.: Lubrication in cold strip rolling in the mixed regime, Proc. Instn Mech. Engrs, 204 (1990), pp 249–261

    Article  Google Scholar 

  48. Sheu, S.; Wilson, W. R. D.: Mixed Lubrication of strip rolling, STLE Tribology Trans., 37 (1994), pp 483–493

  49. Qiu, Z. L.; Yuen, W. Y. D.; Tieu, A. K.: Mixed-film lubrication theory and tension effects on metal rolling processes, J. Tribology (Trans. ASME), 121 (1999), pp 908–915

    Article  Google Scholar 

  50. Bergmann, M.; Zeman, K.; Kainz, A.; Krimpelstätter, K.: Enhanced mixed lubrication model for cold rolling based on a modular and hierarchical structure, Proceedings, 4th ICTMP Conference, Nice, France, 2010, pp 789–798

  51. Carretta, Y.; Stéphany, A.; Legrand, N.; Laugier, M.; Ponthot, J. P.: Metalub, a slab method software for the numerical simulation of mixed lubrication regime – application to cold rolling, Proceedings, 4th ICTMP Conference, Nice, France, 2010, pp 799–808

  52. Laugier, M.; Tornicelli, M.; Silvy-Leligois, C.; Bouquegneau, D.; Launet, D.; Alvarez, J. A.: Flexible lubrication concept: the future of cold rolling lubrication, Proceedings, 4th ICTMP Conference, Nice, France, 2010, pp 735–744

  53. Wilson, W. R. D.; Sakaguchi, Y.; Schmid, S. R.: A mixed flow model for lubrication with emulsions, STLE Tribology Trans., 37 (1994), no. 3, pp 543–551

    Google Scholar 

  54. Tieu, A. K.; Kosasih, P. B.; Godbole, A.: A thermal analysis of strip-rolling in mixed-film lubrication with O/W emulsions, Trib. Int., 39 (2006), no. 12, pp 1591–1600

    Google Scholar 

  55. Montmitonnet, P.; Stephany, A.; Cassarini, S.; Ponthot, J. P.; Laugier, M.; Legrand, N.: Modelling of metal forming lubrication by O/W emulsions, Proceedings, 3rd ICTMP Conference, Yokohama, Japan, 2007, pp 85–90

  56. Mizuno, T.; Okamoto, M.: Effects of Lubricant Viscosity at Pressure and Sliding Velocity on Lubricating Conditions in the Compression-Friction Test on Sheet Metals, J. Lub. Tech. (Trans. ASME), 104 (1982), pp 53–59

    Article  Google Scholar 

  57. Bech, J.; Bay, N.; Eriksen, M.: Entrapment and escape of liquid lubricant in metal forming, Wear, 132 (1999), pp 134–139

    Article  Google Scholar 

  58. Laugier, M.; Boman, R.; Legrand, N.; Ponthot, J. P.; Tornicelli, M.; Bech, J. I.; Carretta, Y.: Micro-plasto-hydrodynamic lubrication: a fundamental mechanism in cold rolling, Proceedings, 6th ICTMP Conference, Darmstadt, Germany, 2014, pp 228–241

  59. Montmitonnet, P.: Hot and cold strip rolling processes, Comput. Meth. Appl. Mech. Engg, 195 (2006), pp 6604–6625

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Montmitonnet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montmitonnet, P., Fourment, L., Ripert, U. et al. State of the Art in Rolling Process Modelling. Berg Huettenmaenn Monatsh 161, 396–404 (2016). https://doi.org/10.1007/s00501-016-0520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00501-016-0520-4

Keywords

Schlüsselwörter

Navigation