Skip to main content
Log in

New extensions of fuzzy sets with applications to rough topology and medical diagnosis

  • Fuzzy systems and their mathematics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

One of the most useful expansions of fuzzy sets for coping with information uncertainties is the Fermatean fuzzy sets. Under this environment, in this article, we define a novel extensions of fuzzy sets called n-fuzzy sets and introduce their relationship with intuitionistic fuzzy sets, Pythagorean fuzzy sets and Fermatean fuzzy sets. The n-fuzzy sets can deal with more uncertain situations than intuitionistic fuzzy sets, Pythagorean fuzzy sets and Fermatean fuzzy sets because of their larger range of describing the membership grades. Then, we provide the necessary set of operations for the n-fuzzy sets, as well as their various features. Furthermore, we present the notion of rough n-fuzzy topology. Moreover, we study the concepts of the rough n-fuzzy interior, closure and obtain some of their properties, respectively. Ultimately, we study the Sanchez’s approach for medical diagnosis and extend this concept with the notion of n-fuzzy set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Enquiries about data availability should be directed to the authors.

References

Download references

Acknowledgements

The author is grateful to the referees for their valuable suggestions which helped in modifying the first version of this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hariwan Z. Ibrahim.

Ethics declarations

Conflict of interest

Hariwan Z. Ibrahim (author) declares that he has no conflict of interest.

Human participants

This article does not contain any studies with human participants or animals performed by of the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A. Proof of Theorem 2.2

Since for any two numbers \(m, r\in [0, 1]\), we have

$$\begin{aligned} m^{5}\le m^{4}\le m^{3}\le m^{2}\le m \end{aligned}$$

and

$$\begin{aligned} r^{5}\le r^{4}\le r^{3}\le r^{2}\le r. \end{aligned}$$

Therefore, we get

$$\begin{aligned}{} & {} m + r \le 1\\{} & {} \Rightarrow m^{2} + r^{2} \le 1 \\{} & {} \Rightarrow m^{3} + r^{3} \le 1 \\{} & {} \Rightarrow m^{4} + r^{4} \le 1\\{} & {} \Rightarrow m^{5} + r^{5} \le 1. \end{aligned}$$

Then, the space of n-fuzzy (for \(n= 4\) and 5) membership grades is larger than the space of intuitionistic membership grades, Pythagorean membership grades and Fermatean membership grades.

B. Proof of Theorem 2.4

Let \(x_i\in X\) and N be 4-FS. Suppose that that \(\pi _{N}(x_i) = 0\) for \(x_i\in X\), then we have the following:

  • $$\begin{aligned}{} & {} \begin{aligned} (1)&\quad (\delta _{N}(x_i))^{4} + (\theta _{N}(x_i))^{4} =1\\&\quad \Rightarrow -(\delta _{N}(x_i))^{4} = (\theta _{N}(x_i))^{4} -1\\&\quad \Rightarrow -(\delta _{N}(x_i))^{4} = ((\theta _{N}(x_i))^{2})^{2} -1\\&\quad \Rightarrow -(\delta _{N}(x_i))^{4} = ((\theta _{N}(x_i))^{2} -1)((\theta _{N}(x_i))^{2} +1)\\&\quad \Rightarrow \left| (\delta _{N}(x_i))^{4}\right| = \left| ((\theta _{N}(x_i))^{2} -1)((\theta _{N}(x_i))^{2} +1)\right| \\&\quad \Rightarrow \left| \delta _{N}(x_i)\right| ^{4} = \left| ((\theta _{N}(x_i))^{2} -1)((\theta _{N}(x_i))^{2} +1)\right| \\&\quad \Rightarrow \left| \delta _{N}(x_i)\right| = \root 4 \of {\left| ((\theta _{N}(x_i))^{2} -1)((\theta _{N}(x_i))^{2} +1)\right| }. \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

C. Proof of Theorem 2.9

From Definition 2.6, we have:

  • $$\begin{aligned}&\begin{aligned} (1)\quad N_1 \oplus N_2&= \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) \\&\quad \left( \root n \of {\delta _{N_2}^{n}+\delta _{N_1}^{n} -\delta _{N_2}^{n}\delta _{N_1}^{n}}, \theta _{N_2}\theta _{N_1}\right) \\&= N_2 \oplus N_1. \end{aligned} \end{aligned}$$
  • $$\begin{aligned}&\begin{aligned} (2) \quad N_1 \otimes N_2&= \left( \delta _{N_1}\delta _{N_2}, \root n \of {\theta _{N_1}^{n}+\theta _{N_2}^{n} -\theta _{N_1}^{n}\theta _{N_2}^{n}}\right) \\&= \left( \delta _{N_2}\delta _{N_1}, \root n \of {\theta _{N_2}^{n}+\theta _{N_1}^{n} -\theta _{N_2}^{n}\theta _{N_1}^{n}}\right) \\&= N_2 \otimes N_1. \end{aligned} \end{aligned}$$
  • $$\begin{aligned}&\begin{aligned} (3)\quad N_1\cap N_2&= (min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\\&=(min\{\delta _{N_2},\delta _{N_1}\},max\{\theta _{N_2},\theta _{N_1}\})\\&=N_2\cap N_1. \end{aligned} \end{aligned}$$
  • (4) We can proof in a similar fashion to (3).

D. Proof of Theorem 2.10

From Definition 2.6, we have:

  • $$\begin{aligned}&\begin{aligned} (1)\quad&(N_1\cap N_2)\cup N_2\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\cup (\delta _{N_2},\theta _{N_2})\\&\quad =(max\{min\{\delta _{N_1},\delta _{N_2}\}, \delta _{N_2}\},\\&\qquad \qquad min\{max\{\theta _{N_1},\theta _{N_2}\},\theta _{N_2}\})\\&\quad = (\delta _{N_2},\theta _{N_2})=N_{2}. \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

E. Proof of Theorem 2.11

For the three n-FSs \(N, N_1\) and \(N_2\), and \(\zeta , \zeta _1, \zeta _2 > 0\), we have:

$$\begin{aligned}&\begin{aligned} (1)\quad&\zeta (N_1 \oplus N_2)\\&\quad = \zeta \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) \\&\quad = \left( \root n \of {1-(1-\delta _{N_1}^{n}-\delta _{N_2}^{n} +\delta _{N_1}^{n}\delta _{N_2}^{n}})^{\zeta }, (\theta _{N_1}\theta _{N_2})^{\zeta }\right) \\&\quad = \left( \root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }(1-\delta _{N_2}^{n})^{\zeta }}, \theta _{N_1}^{\zeta }\theta _{N_2}^{\zeta }\right) . \end{aligned} \end{aligned}$$

And

$$\begin{aligned}&\begin{aligned}&\zeta N_1 \oplus \zeta N_2\\&\quad = \left( \root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }}, \theta _{N_1}^{\zeta }\right) \oplus \left( \root n \of {1-(1-\delta _{N_2}^{n})^{\zeta }}, \theta _{N_2}^{\zeta }\right) \\&\quad =\left( \root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }+ 1-(1-\delta _{N_2}^{n})^{\zeta }-(1-(1-\delta _{N_1}^{n})^{\zeta })(1-(1-\delta _{N_2}^{n})^{\zeta })}, \theta _{N_1}^{\zeta }\theta _{N_2}^{\zeta }\right) \\&\quad = \left( \root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }(1-\delta _{N_2}^{n})^{\zeta }}, \theta _{N_1}^{\zeta }\theta _{N_2}^{\zeta }\right) =\zeta (N_1 \oplus N_2). \end{aligned}\\&\begin{aligned} (2)\quad&(\zeta _1 + \zeta _2)N\\&\quad = (\zeta _1 + \zeta _2)(\delta _{N}, \theta _{N})= \left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _1 + \zeta _2}}, \theta _{N}^{\zeta _1 + \zeta _2}\right) \\&\quad =\left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _1}(1-\delta _{N}^{n})^{\zeta _2}}, \theta _{N}^{\zeta _1 + \zeta _2}\right) \\&\quad =\left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _1}+ 1-(1-\delta _{N}^{n})^{\zeta _2}-(1-(1-\delta _{N}^{n})^{\zeta _1})(1-(1-\delta _{N}^{n})^{\zeta _2})}, \theta _{N}^{\zeta _1}\theta _{N}^{\zeta _2}\right) \\&\quad =\left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _1}}, \theta _{N}^{\zeta _1}\right) \oplus \left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _2}}, \theta _{N}^{\zeta _2}\right) \\&\quad =\zeta _1 N\oplus \zeta _2 N. \end{aligned} \end{aligned}$$
$$\begin{aligned}&\begin{aligned} (3)\quad&(N_1 \otimes N_2)^{\zeta }\\&\quad = \left( \delta _{N_1}\delta _{N_2}, \root n \of {\theta _{N_1}^{n}+\theta _{N_2}^{n} -\theta _{N_1}^{n}\theta _{N_2}^{n}}\right) ^{\zeta }\\&\quad = \left( (\delta _{N_1}\delta _{N_2})^{\zeta }, \root n \of {1-(1-\theta _{N_1}^{n}-\theta _{N_2}^{n} +\theta _{N_1}^{n}\theta _{N_2}^{n})^{\zeta }}\right) \\&\quad = \left( \delta _{N_1}^{\zeta }\delta _{N_2}^{\zeta }, \root n \of {1-(1-\theta _{N_1}^{n})^{\zeta }(1-\theta _{N_2}^{n})^{\zeta }}\right) \\&\quad = \left( \delta _{N_1}^{\zeta }, \root n \of {1-(1-\theta _{N_1}^{n})^{\zeta }}\right) \\&\qquad \otimes \left( \delta _{N_2}^{\zeta }, \root n \of {1-(1-\theta _{N_2}^{n})^{\zeta }}\right) = N_1^{\zeta } \otimes N_2^{\zeta }. \end{aligned} \end{aligned}$$
$$\begin{aligned}&\begin{aligned} (4)\quad&N^{\zeta _1}\otimes N^{\zeta _2}\\&\quad = \left( \delta _{N}^{\zeta _1}, \root n \of {1-(1-\theta _{N}^{n})^{\zeta _1}}\right) \\&\qquad \otimes \left( \delta _{N}^{\zeta _2}, \root n \of {1-(1-\theta _{N}^{n})^{\zeta _2}}\right) \\&\quad = \left( \delta _{N}^{\zeta _1 + \zeta _2}, \root n \of {1-(1-\theta _{N}^{n})^{\zeta _1 + \zeta _2}}\right) \\&\quad = N^{(\zeta _1+\zeta _2)}. \end{aligned} \end{aligned}$$

F. Proof of Theorem 2.12

For the three n-FSs \(N_1, N_2\), \(N_3\), and \(\zeta > 0\), we have:

  • $$\begin{aligned}&\begin{aligned} (1)\quad&N_1\cap (N_2\cap N_3)\\&\quad = (\delta _{N_1}, \theta _{N_1})\cap (min\{\delta _{N_2},\delta _{N_3}\},max\{\theta _{N_2},\theta _{N_3}\})\\&\quad = (min\{\delta _{N_1},min\{\delta _{N_2},\delta _{N_3}\}\},\\&\qquad max\{\theta _{N_1},max\{\theta _{N_2},\theta _{N_3}\}\})\\&\quad = (min\{min\{\delta _{N_1},\delta _{N_2}\},\delta _{N_3}\},\\&\qquad max\{max\{\theta _{N_1},\theta _{N_2}\},\theta _{N_3}\})\\&\quad = (min\{\delta _{N_1},\delta _{N_2}\}, max\{\theta _{N_1},\theta _{N_2}\})\cap (\delta _{N_3}, \theta _{N_3})\\&\quad =(N_1\cap N_2) \cap N_3. \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

  • $$\begin{aligned}&\begin{aligned} (3)\quad&\zeta (N_1\cup N_2)\\&\quad = \zeta (max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\quad = \left( \root n \of {1-(1-max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\})^{\zeta }}, min\{\theta _{N_1}^{\zeta },\theta _{N_2}^{\zeta }\}\right) . \end{aligned} \end{aligned}$$

    And

    $$\begin{aligned}&\begin{aligned}&\zeta N_1\cup \zeta N_2\\&\quad = \left( \root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }}, \theta _{N_1}^{\zeta }\right) \cup \left( \root n \of {1-(1-\delta _{N_2}^{n})^{\zeta }}, \theta _{N_2}^{\zeta }\right) \\&\quad =\left( max\{\root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }}, \root n \of {1-(1-\delta _{N_2}^{n})^{\zeta }}\},min\{\theta _{N_1}^{\zeta }, \theta _{N_2}^{\zeta }\}\right) \\&\quad = \left( \root n \of {1-(1-max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\})^{\zeta }},min\{\theta _{N_1}^{\zeta }, \theta _{N_2}^{\zeta }\}\right) =\zeta (N_1\cup N_2). \end{aligned} \end{aligned}$$
  • (4) We can proof in a similar fashion to (3).

G. Proof of Theorem 2.13

For the three n-FSs \(N, N_1\), \(N_2\), and \(\zeta > 0\), we have:

  • $$\begin{aligned} \begin{aligned} (1)\quad&(N_1 \cap N_2)^{c}\\&\quad = (min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})^{c}\\&\quad = (max\{\theta _{N_1},\theta _{N_2}\}, min\{\delta _{N_1},\delta _{N_2}\})\\&\quad = (\theta _{N_1},\delta _{N_1})\cup (\theta _{N_2},\delta _{N_2})\\&\quad = N_1^{c} \cup N_2^{c}. \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

  • $$\begin{aligned} \begin{aligned} (1)\quad&(N_1 \oplus N_2)^{c}\\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) ^{c}\\&\quad = \left( \theta _{N_1}\theta _{N_2}, \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}\right) \\&\quad = (\theta _{N_1},\delta _{N_1})\otimes (\theta _{N_2},\delta _{N_2})\\&\quad = N_1^{c} \otimes N_2^{c}. \end{aligned} \end{aligned}$$
  • (4) We can proof in a similar fashion to (3).

  • $$\begin{aligned} \begin{aligned} (1)\quad (N^{c})^{\zeta }&= (\theta _{N},\delta _{N})^{\zeta }\\&=\left( \theta _{N}^{\zeta }, \root n \of {1-(1-\delta _{N}^{n})^{\zeta }}\right) \\&=\left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta }}, \theta _{N}^{\zeta }\right) ^{c}\\&=(\zeta N)^{c}. \end{aligned} \end{aligned}$$
  • (6) We can proof in a similar fashion to (5).

H. Proof of Theorem 2.14

From Definition 2.6, we have:

  • $$\begin{aligned}&\begin{aligned} (1)\quad&(N_1\cap N_2)\oplus N_3\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\oplus (\delta _{N_3},\theta _{N_3})\\&\quad =\left( \root n \of {min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}+\delta _{N_3}^{n}-\delta _{N_3}^{n}min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}},\right. \\&\qquad \left. max\{\theta _{N_1},\theta _{N_2}\}\theta _{N_3}\right) \\&\quad =\left( \root n \of {(1-\delta _{N_3}^{n})min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}+\delta _{N_3}^{n}}, \right. \\&\quad \left. max\{\theta _{N_1}\theta _{N_3},\theta _{N_2}\theta _{N_3}\}\right) . \end{aligned} \end{aligned}$$

    And

    $$\begin{aligned} \begin{aligned}&(N_1\oplus N_3)\cap (N_2\oplus N_3)\\&\quad =\left( \root n \of {\delta _{N_1}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_3}^{n}}, \theta _{N_1}\theta _{N_3}\right) \\&\qquad \cap \left( \root n \of {\delta _{N_2}^{n}+\delta _{N_3}^{n} -\delta _{N_2}^{n}\delta _{N_3}^{n}}, \theta _{N_2}\theta _{N_3}\right) \\&\quad =\left( min\{\root n \of {\delta _{N_1}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_3}^{n}},\right. \\&\qquad \left. \root n \of {\delta _{N_2}^{n}+\delta _{N_3}^{n} -\delta _{N_2}^{n}\delta _{N_3}^{n}}\}, max\{\theta _{N_1}\theta _{N_3}, \theta _{N_2}\theta _{N_3}\}\right) \\&\quad =\left( min\{\root n \of {(1-\delta _{N_3}^{n})\delta _{N_1}^{n}+\delta _{N_3}^{n}},\right. \\&\qquad \left. \root n \of {(1-\delta _{N_3}^{n})\delta _{N_2}^{n}+\delta _{N_3}^{n}}\}, max\{\theta _{N_1}\theta _{N_3}, \theta _{N_2}\theta _{N_3}\}\right) \\&\quad =\left( \root n \of {(1-\delta _{N_3}^{n})min\{\delta _{N_1}^{n}, \delta _{N_2}^{n}\}+\delta _{N_3}^{n}},\right. \\&\qquad \left. max\{\theta _{N_1}\theta _{N_3}, \theta _{N_2}\theta _{N_3}\}\right) . \end{aligned} \end{aligned}$$

    Thus, \((N_1\cap N_2)\oplus N_3=(N_1\oplus N_3)\cap (N_2\oplus N_3)\).

  • (2) We can proof in a similar fashion to (1).

  • $$\begin{aligned} \begin{aligned} (3)\quad&(N_1\cap N_2)\otimes N_3\\&\quad = (min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\otimes N_3\\&\quad =\left( min\{\delta _{N_1},\delta _{N_2}\}\delta _{N_3},\right. \\&\qquad \left. \root n \of {max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}+\theta _{N_3}^{n}-\theta _{N_3}^{n}max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}}\right) \\&\quad =\left( min\{\delta _{N_1}\delta _{N_3},\delta _{N_2}\delta _{N_3}\},\right. \\&\qquad \left. \root n \of {(1-\theta _{N_3}^{n})max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\} +\theta _{N_3}^{n}}\right) . \end{aligned} \end{aligned}$$

    And

    $$\begin{aligned} \begin{aligned}&(N_1\otimes N_3)\cap (N_2\otimes N_3)\\&\quad =\left( \delta _{N_1}\delta _{N_3}, \root n \of {\theta _{N_1}^{n}+\theta _{N_3}^{n} -\theta _{N_1}^{n}\theta _{N_3}^{n}}\right) \\&\qquad \cap \left( \delta _{N_2}\delta _{N_3}, \root n \of {\theta _{N_2}^{n}+\theta _{N_3}^{n} -\theta _{N_2}^{n}\theta _{N_3}^{n}}\right) \\&\quad =\left( \delta _{N_1}\delta _{N_3}, \root n \of {(1-\theta _{N_3}^{n})\theta _{N_1}^{n} +\theta _{N_3}^{n}}\right) \\&\qquad \cap \left( \delta _{N_2}\delta _{N_3},\right. \\&\qquad \left. \root n \of {(1-\theta _{N_3}^{n})\theta _{N_2}^{n} +\theta _{N_3}^{n}}\right) \\&\quad =\left( min\{\delta _{N_1}\delta _{N_3},\delta _{N_2}\delta _{N_3}\},\right. \\&\qquad \left. max\left\{ \root n \of {(1-\theta _{N_3}^{n})\theta _{N_1}^{n} +\theta _{N_3}^{n}}, \root n \of {(1-\theta _{N_3}^{n})\theta _{N_2}^{n} +\theta _{N_3}^{n}}\right\} \right) \\&\quad =\left( min\{\delta _{N_1}\delta _{N_3},\delta _{N_2}\delta _{N_3}\},\right. \\&\qquad \left. \root n \of {(1-\theta _{N_3}^{n})max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\} +\theta _{N_3}^{n}}\right) . \end{aligned} \end{aligned}$$

    Thus, \((N_1\cap N_2)\otimes N_3=(N_1\otimes N_3)\cap (N_2\otimes N_3)\).

  • (5) We can proof in a similar fashion to (3).

I. Proof of Theorem 2.15

  • $$\begin{aligned} \begin{aligned} (1)\quad&N_1\oplus N_2\oplus N_3\\&\quad = (\delta _{N_1},\theta _{N_1})\oplus (\delta _{N_2},\theta _{N_2})\oplus (\delta _{N_3},\theta _{N_3})\\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) \oplus (\delta _{N_3},\theta _{N_3})\\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}+\delta _{N_3}^{n}-\delta _{N_3}^{n}(\delta _{N_1}^{n}+\delta _{N_2}^{n}-\delta _{N_1}^{n}\delta _{N_2}^{n})}, \theta _{N_1}\theta _{N_2}\theta _{N_3}\right) \\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_2}^{n}-\delta _{N_1}^{n}\delta _{N_3}^{n}-\delta _{N_2}^{n}\delta _{N_3}^{n}+\delta _{N_1}^{n}\delta _{N_2}^{n}\delta _{N_3}^{n}}, \theta _{N_1}\theta _{N_2}\theta _{N_3}\right) \\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_3}^{n}+\delta _{N_2}^{n}-\delta _{N_2}^{n}(\delta _{N_1}^{n}+\delta _{N_3}^{n}-\delta _{N_1}^{n}\delta _{N_3}^{n})}, \theta _{N_1}\theta _{N_2}\theta _{N_3}\right) \\&\quad = \left( \root n \of {\delta _{N_1}^{n}+\delta _{N_3}^{n} -\delta _{N_1}^{n}\delta _{N_3}^{n}}, \theta _{N_1}\theta _{N_3}\right) \oplus (\delta _{N_2},\theta _{N_2})\\&\quad =N_1\oplus N_3\oplus N_2. \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

J. Proof of Theorem 2.20

Let \(s(N) = 0\). Then, \((\delta _{N}(x))^{n} = (\theta _{N}(x))^{n}\) implies that \(\delta _{N}(x) = \theta _{N}(x)\) for all \(x\in X\). Conversely, suppose that \(\delta _{N}(x) = \theta _{N}(x)\). It follows immediately that, for all \(x\in X\), \((\delta _{N}(x))^{n} = (\theta _{N}(x))^{n}\). Therefore, \((\delta _{N}(x))^{n} - (\theta _{N}(x))^{n}\)= 0. Thus, \(s(N) = 0\).

K. Proof of Theorem 2.21

  1. (1)

    Let \(a(N) = 1\). Then, \((\delta _{N}(x))^{n} + (\theta _{N}(x))^{n} = 1\). Since \(\pi _{N}(x) =\root n \of {1 - [(\delta _{N}(x))^{n} + (\theta _{N}(x))^{n}]}\), then \(\pi _{N}(x)= 0\). Conversely, suppose that \(\pi _{N}(x)= 0\). Then, it follow that, \((\delta _{N}(x))^{n} + (\theta _{N}(x))^{n}= 1\) implies \(a(N) = 1\).

  2. (2)

    Let \(a(N) = 0\). Then, \((\delta _{N}(x))^{n} = - (\theta _{N}(x))^{n}\) implies that \(\left| \delta _{N}(x)\right| ^{n}= \left| \theta _{N}(x)\right| ^{n}\) and hence \(\left| \delta _{N}(x)\right| = \left| \theta _{N}(x)\right| \).

L. Proof of Theorem 2.25

From Definition 2.1, we can obtain \(\delta _{N_1},\theta _{N_1},\delta _{N_2},\theta _{N_2}\in [0,1]\), \(0\le \delta _{N_1}^{n}+\theta _{N_1}^{n}\le 1\) and \(0\le \delta _{N_2}^{n}+\theta _{N_2}^{n}\le 1\), then

  • $$\begin{aligned} \begin{aligned} (1)\quad d(N_1, N_2)&=\sqrt{\frac{1}{2}[(\delta _{N_1}^{n}-\delta _{N_2}^{n})^{2}+(\theta _{N_1}^{n}-\theta _{N_2}^{n})^{2}+ (\pi _{N_1}^{n}-\pi _{N_2}^{n})^{2}]}\\&=\sqrt{\frac{1}{2}[(\delta _{N_2}^{n}-\delta _{N_1}^{n})^{2}+(\theta _{N_2}^{n}-\theta _{N_1}^{n})^{2}+ (\pi _{N_2}^{n}-\pi _{N_1}^{n})^{2}]}\\&=d(N_2, N_1). \end{aligned} \end{aligned}$$
  • (2) Let \(d(N_1, N_2)={{\sqrt{\frac{1}{2}[(\delta _{N_1}^{n}-\delta _{N_2}^{n})^{2}+(\theta _{N_1}^{n}-\theta _{N_2}^{n})^{2}+ (\pi _{N_1}^{n}-\pi _{N_2}^{n})^{2}]}=0}}\), then we get \((\delta _{N_1}^{n}-\delta _{N_2}^{n})=0\), \((\theta _{N_1}^{n}-\theta _{N_2}^{n})=0\) and \((\pi _{N_1}^{n}-\pi _{N_2}^{n})^{2}=0\), and thus \(\delta _{N_1}=\delta _{N_2}\), \(\theta _{N_1}=\theta _{N_2}\), and \(\pi _{N_1}=\pi _{N_2}\), that is, \(N_1 = N_2\).

  • (3) Obviously \(0\le d(N_1, N_2)\). Now,

    $$\begin{aligned} \begin{aligned}&d(N_1, N_2)\\&\quad =\sqrt{\frac{1}{2}[(\delta _{N_1}^{n}-\delta _{N_2}^{n})^{2}+(\theta _{N_1}^{n}-\theta _{N_2}^{n})^{2}+ (\pi _{N_1}^{n}-\pi _{N_2}^{n})^{2}]}\\&\quad =\sqrt{\frac{1}{2}[(\delta _{N_1}^{n}\!-\!\delta _{N_2}^{n})^{2}\!+\!(\theta _{N_1}^{n}\!-\!\theta _{N_2}^{n})^{2}\!+\! [(\delta _{N_1}^{n}\!+\!\delta _{N_2}^{n})\!+\!(\theta _{N_1}^{n}\!+\!\theta _{N_2}^{n})]^{2}]}\\&\quad \le \sqrt{\frac{1}{2}[2\delta _{N_1}^{2n}+2\delta _{N_2}^{2n}+2\theta _{N_1}^{2n}+2\theta _{N_2}^{2n}+4\delta _{N_1}^{n}\theta _{N_1}^{n}+4\delta _{N_2}^{n}\theta _{N_2}^{n}]}\\&\quad =\sqrt{(\delta _{N_1}^{n}+\theta _{N_1}^{n})^{2}+(\delta _{N_2}^{n}+\theta _{N_2}^{n})^{2}}\le \sqrt{2}. \end{aligned} \end{aligned}$$

M. Proof of Theorem 2.27

  1. (1)

    Since \(\delta _{N_1}\ge \delta _{N_2}\) and \(\theta _{N_1}\le min\left\{ \theta _{N_2}, \frac{\theta _{N_2} \pi _{1}}{\pi _{2}}\right\} \), then \(\theta _{N_1} \pi _{2}\le \theta _{N_2} \pi _{1} \Rightarrow \theta _{N_1}^{n} \pi _{2}^{n}\le \theta _{N_2}^{n} \pi _{1}^{n} \Rightarrow \theta _{N_1}^{n}\theta _{N_2}^{n}+\theta _{N_1}^{n} \pi _{2}^{n}\le \theta _{N_1}^{n}\theta _{N_2}^{n}+\theta _{N_2}^{n} \pi _{1}^{n} \Rightarrow \theta _{N_1}^{n}(\theta _{N_2}^{n}+\pi _{2}^{n})\le \theta _{N_2}^{n}(\theta _{N_1}^{n}+ \pi _{1}^{n}) \Rightarrow \theta _{N_1}^{n}(1-\delta _{N_2}^{n})\le \theta _{N_2}^{n}(1-\delta _{N_1}^{n}) \Rightarrow \left( \frac{\theta _{N_1}^{n}}{\theta _{N_2}^{n}}\right) ^{\zeta }\le \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }\) or \(\left( \frac{\theta _{N_1}^{n}}{\theta _{N_2}^{n}}\right) \le \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) \Rightarrow 1- \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }+ \left( \frac{\theta _{N_1}^{n}}{\theta _{N_2}^{n}}\right) ^{\zeta }\le 1\) or \(1- \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) + \left( \frac{\theta _{N_1}^{n}}{\theta _{N_2}^{n}}\right) \le 1 \Rightarrow \left( \root n \of {1- \left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }}\right) ^{n}+ \left( \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) ^{n}\le 1\) or \(\left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}\right) ^{n}+ \left( \frac{\theta _{N_1}}{\theta _{N_2}}\right) ^{n}\le 1\). Thus, \(N_1\ominus N_2\) and \(\zeta (N_1\ominus N_2) \) are n-FSs.

  2. (2)

    We can proof in a similar fashion to (2).

N. Proof of Theorem 555552.28

  1. (1)

    Since \(\delta _{N_1}\ge \delta _{N_2}\) and \(\theta _{N_1}\le min\left\{ \theta _{N_2}, \frac{\theta _{N_2} \pi _{1}}{\pi _{2}}\right\} \), then from Definitions 2.6 and 2.26, we get \(\zeta (N_1\ominus N_2) =\zeta \left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) \) \(={{ \left( \root n \of {1-\left( 1-\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }}, \left( \frac{\theta _{N_1}}{\theta _{N_2}}\right) ^{\zeta }\right) }}\) \(=\left( \root n \of {1-\left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }}, \left( \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) \right) \), and \(\zeta N_1\ominus \zeta N_2\) \(= \left( \root n \of {1-(1-\delta _{N_1}^{n})^{\zeta }}, \theta _{N_1}^{\zeta }\right) \ominus \left( \root n \of {1-(1-\delta _{N_2}^{n})^{\zeta }}, \theta _{N_2}^{\zeta }\right) \) \(= \left( \root n \of {\frac{1-(1-\delta _{N_1}^{n})^{\zeta }-1+(1-\delta _{N_2}^{n})^{\zeta }}{1-1+(1-\delta _{N_2}^{n})^{\zeta }}}, \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) \) \(= \left( \root n \of {\frac{(1-\delta _{N_2}^{n})^{\zeta }-(1-\delta _{N_1}^{n})^{\zeta }}{(1-\delta _{N_2}^{n})^{\zeta }}}, \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) \) \(= \left( \root n \of {1-\left( \frac{1-\delta _{N_1}^{n}}{1-\delta _{N_2}^{n}}\right) ^{\zeta }}, \frac{\theta _{N_1}^{\zeta }}{\theta _{N_2}^{\zeta }}\right) \). Hence, \(\zeta (N_1\ominus N_2) = \zeta N_1\ominus \zeta N_2\).

  2. (2)

    We can proof in a similar fashion to (1).

  3. (3)

    \(\zeta _{1} N\ominus \zeta _{2} N = \left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _{1}}}, \theta _{N}^{\zeta _{1}}\right) \ominus \left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _{2}}}, \theta _{N}^{\zeta _{2}}\right) = \left( \root n \of {\frac{1-(1-\delta _{N}^{n})^{\zeta _{1}}-1 +(1-\delta _{N}^{n})^{\zeta _{2}}}{1-1+(1-\delta _{N}^{n})^{\zeta _{2}}}}, \frac{\theta _{N}^{\zeta _{1}}}{\theta _{N}^{\zeta _{2}}}\right) =\left( \root n \of {1-(1-\delta _{N}^{n})^{\zeta _{1}-\zeta _{2}}}, \theta _{N}^{\zeta _{1}-\zeta _{2}}\right) =(\zeta _{1} - \zeta _{2}) N\).

  4. (4)

    We can proof in a similar fashion to (3).

O. Proof of Theorem 2.29

From Definitions 2.6 and 2.26, we can get

  1. (1)

    \((N_1\ominus N_2)^{c} = \left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) ^{c}=\left( \frac{\theta _{N_1}}{\theta _{N_2}}, \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}\right) =(\theta _{N_1},\delta _{N_1})\ominus (\theta _{N_2},\delta _{N_2})=N_1^{c}\oslash N_2^{c}\).

  2. (2)

    We can proof in a similar fashion to (1).

P. Proof of Theorem 2.30

From Definitions 2.6 and 2.26, we can get

  • $$\begin{aligned} \begin{aligned} (1)\quad&(N_1\cup N_2)\ominus (N_1\cap N_2)\\&\quad =(max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\qquad \ominus (min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\\&\quad =\left( \root n \of {\frac{(max\{\delta _{N_1},\delta _{N_2}\})^{n}-(min\{\delta _{N_1},\delta _{N_2}\})^{n}}{1-min\{\delta _{N_1},\delta _{N_2}\})^{n}}},\right. \\&\qquad \qquad \left. \frac{min\{\theta _{N_1},\theta _{N_2}\}}{max\{\theta _{N_1},\theta _{N_2}\}}\right) \\&\quad =\left( \root n \of {\frac{max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}-min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}}{1-min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) \\&\quad =\left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) \\&\quad =N_1\ominus N_2. \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

Q. Proof of Theorem 2.31

From Definitions 2.6 and 2.26, we can get

  • $$\begin{aligned} \begin{aligned} (1)\quad&(N_1\cap N_2)\ominus (N_1\cup N_2)\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\\&\qquad \ominus (max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\quad =\left( \root n \of {\frac{(min\{\delta _{N_1},\delta _{N_2}\})^{n}-(max\{\delta _{N_1},\delta _{N_2}\})^{n}}{1-max\{\delta _{N_1},\delta _{N_2}\})^{n}}},\right. \\&\qquad \qquad \left. \frac{max\{\theta _{N_1},\theta _{N_2}\}}{min\{\theta _{N_1},\theta _{N_2}\}}\right) \\&\quad =\left( \root n \of {\frac{min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}-max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}}{1-max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}}}, \frac{\theta _{N_2}}{\theta _{N_1}}\right) \\&\quad =\left( \root n \of {\frac{\delta _{N_2}^{n}-\delta _{N_1}^{n}}{1-\delta _{N_1}^{n}}}, \frac{\theta _{N_2}}{\theta _{N_1}}\right) \\&\quad =N_2\ominus N_1. \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

R. Proof of Theorem 2.32

From Definitions 2.6 and 2.26, we can get

  • $$\begin{aligned}&\begin{aligned} (1)\quad&(N_1\ominus N_2)\oplus N_2\\&\quad = \left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}}, \frac{\theta _{N_1}}{\theta _{N_2}}\right) \oplus (\delta _{N_2},\theta _{N_2})\\&\quad =\left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}+\delta _{N_2}^{n} -\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n}}{1-\delta _{N_2}^{n}}\delta _{N_2}^{n}}, \frac{\theta _{N_1}}{\theta _{N_2}}\theta _{N_2}\right) \\&\quad =\left( \root n \of {\frac{\delta _{N_1}^{n}-\delta _{N_2}^{n} +\delta _{N_2}^{n}-\delta _{N_2}^{2n}-\delta _{N_1}^{n}\delta _{N_2}^{n}+\delta _{N_2}^{2n}}{1-\delta _{N_2}^{n}}}, \theta _{N_1}\right) \\&\quad =\left( \root n \of {\frac{\delta _{N_1}^{n}(1-\delta _{N_2}^{n})}{1-\delta _{N_2}^{n}}}, \theta _{N_1}\right) \\&\quad =(\delta _{N_1},\theta _{N_1})=N_1. \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

S. Proof of Theorem 2.34

From Definitions 2.6 and 2.33, we can get

  • $$\begin{aligned}&\begin{aligned} (1)\quad&(N_1\cap N_2)\textcircled {a} N_3\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\textcircled {a} (\delta _{N_3},\theta _{N_3})\\&\quad = \left( \frac{min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}+\delta _{N_3}^{n}}{2}, \frac{max\{\theta _{N_1}^{n},\theta _{N_2}\}+\theta _{N_3}^{n}}{2}\right) \\&\quad = \left( min\left\{ \frac{\delta _{N_1}^{n}+\delta _{N_3}^{n}}{2}, \frac{\delta _{N_2}^{n}+\delta _{N_3}^{n}}{2}\right\} , \right. \\&\qquad \left. max\left\{ \frac{\theta _{N_1}^{n}+\theta _{N_3}^{n}}{2}, \frac{\theta _{N_2}^{n}+\theta _{N_3}^{n}}{2}\right\} \right) \\&\quad = \left( \frac{\delta _{N_1}^{n}+\delta _{N_3}^{n}}{2}, \frac{\theta _{N_1}^{n}+\theta _{N_3}^{n}}{2}\right) \bigcap \left( \frac{\delta _{N_2}^{n}+\delta _{N_3}^{n}}{2}, \frac{\theta _{N_2}^{n}+\theta _{N_3}^{n}}{2}\right) \\&\quad =(N_1\textcircled {a} N_3)\cap (N_2\textcircled {a} N_3). \end{aligned} \end{aligned}$$
  • (2) We can proof in a similar fashion to (1).

  • $$\begin{aligned} \begin{aligned} (3)\quad&(N_1\textcircled {a} N_2)^{c}\\&\quad =\left( \frac{\delta _{N_1}^{n}+\delta _{N_2}^{n}}{2}, \frac{\theta _{N_1}^{n}+\theta _{N_2}^{n}}{2}\right) ^{c}\\&\quad =\left( \frac{\theta _{N_1}^{n}+\theta _{N_2}^{n}}{2}, \frac{\delta _{N_1}^{n}+\delta _{N_2}^{n}}{2}\right) \\&\quad =(\theta _{N_1},\delta _{N_1}) \textcircled {a} (\theta _{N_2},\delta _{N_2})= N_1^{c}\textcircled {a} N_2^{c}. \end{aligned} \end{aligned}$$
  • (4) Since for any two real numbers c and d, we have \(min(c,d)+max(c,d)= c + d\), and \(min(c,d)\cdot max(c,d)= c \cdot d\). Now,

    $$\begin{aligned}&(N_1\cap N_2)\oplus (N_1\cup N_2)\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\oplus (max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\quad =(\root n \of {min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}+ max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}-min\{\delta _{N_1}^{n},\delta _{N_2}^{n}\} max\{\delta _{N_1}^{n},\delta _{N_2}^{n}\}},\\&\qquad max\{\theta _{N_1},\theta _{N_2}\}min\{\theta _{N_1},\theta _{N_2}\})=(\root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n}-\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}). \end{aligned}$$

    And

    $$\begin{aligned}&(N_1\cap N_2)\otimes (N_1\cup N_2)\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\},max\{\theta _{N_1},\theta _{N_2}\})\otimes (max\{\delta _{N_1},\delta _{N_2}\},min\{\theta _{N_1},\theta _{N_2}\})\\&\quad =(min\{\delta _{N_1},\delta _{N_2}\}max\{\delta _{N_1},\delta _{N_2}\},\\&\qquad \root n \of {max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}+ min\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}-max\{\theta _{N_1}^{n},\theta _{N_2}^{n}\} min\{\theta _{N_1}^{n},\theta _{N_2}^{n}\}})\\&\quad =(\delta _{N_1}\delta _{N_2}, \root n \of {\theta _{N_1}^{n}+\theta _{N_2}^{n}-\theta _{N_1}^{n}\theta _{N_2}^{n}}). \end{aligned}$$

    Thus,

    $$\begin{aligned}&\left( (N_1\cap N_2)\oplus (N_1\cup N_2)\right) \textcircled {a} \left( (N_1\cap N_2)\otimes (N_1\cup N_2)\right) \\&\quad =\left( \root n \of {\delta _{N_1}^{n}+\delta _{N_2}^{n}-\delta _{N_1}^{n}\delta _{N_2}^{n}}, \theta _{N_1}\theta _{N_2}\right) \\&\qquad \textcircled {a} \left( \delta _{N_1}\delta _{N_2}, \root n \of {\theta _{N_1}^{n}+\theta _{N_2}^{n}-\theta _{N_1}^{n}\theta _{N_2}^{n}}\right) \\&\quad =\left( \frac{\delta _{N_1}^{n}+\delta _{N_2}^{n}}{2}, \frac{\theta _{N_1}^{n}+\theta _{N_2}^{n}}{2}\right) \\&\quad =N_1\textcircled {a} N_2. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, H.Z. New extensions of fuzzy sets with applications to rough topology and medical diagnosis. Soft Comput 27, 821–835 (2023). https://doi.org/10.1007/s00500-022-07613-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07613-8

Keywords

Navigation