Skip to main content
Log in

Hybrid similarity measures of single-valued neutrosophic type-2 fuzzy sets and their application to MCDM based on TOPSIS

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Similarity measure (SM) formulas are very useful tool for Multi-criteria decision-making (MCDM) problems, machine learning, medical diagnosis, psychology, etc. In this paper, some SM methods are introduced under single-valued type-2 neutrosophic (SVT2N) information, based on the Dice and Jaccard vector measures. Also, Cosine and weighted Cosine SMs between two SVT2N sets are defined for SVT2NSs. Then, motivated by the idea of vector measures, Hybrid SM and weighted Hybrid SM are developed by combining Dice and Cosine SMs. After then, a decision-making method is put forward based on technique for order of preference by similarity to ideal solution (TOPSIS) method. Immediately after, a real example is given to indicate the practicality and effectiveness of the proposed measures. In here, Hybrid SMs are discussed for different values of \(\lambda \) and compared with the Hybrid SMs and weighted Hybrid SMs in their own. Furthermore, a comparative analysis is made based on the TOPSIS among the vector measures, distance measures and Hybrid SMs and the agreement between the results with other measures shows that the Hybrid SM is strong and essential to minimize error margin for decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Enquiries about data availability should be directed to the authors.

References

  • Abdel-Basset M, Saleh M, Gamal A, Smarandache F (2019) An approach of topsis technique for developing supplier selection with group decision making under type-2 neutrosophic number. Appl Soft Comput 77:438–452

    Article  Google Scholar 

  • Atanassov KT (1994) New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets Syst 61(2):137–142

    Article  MathSciNet  Google Scholar 

  • Chi P, Liu P (2013) An extended topsis method for the multiple attribute decision making problems based on interval neutrosophic set. Neutrosoph Sets Syst 1(1):63–70

    Google Scholar 

  • Dengfeng L, Chuntian C (2002) New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recogn Lett 23(1–3):221–225

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

  • Grzegorzewski P (2004) Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the hausdorff metric. Fuzzy Sets Syst 148(2):319–328

    Article  MathSciNet  Google Scholar 

  • Hung W-L, Yang M-S (2004) Similarity measures between type-2 fuzzy sets. Int J Uncertain Fuzz Knowl Based Syst 12(06):827–841

    Article  MathSciNet  Google Scholar 

  • Hwang C-M, Yang M-S, Hung W-L, Lee ES (2011) Similarity, inclusion and entropy measures between type-2 fuzzy sets based on the sugeno integral. Math Comput Model 53(9–10):1788–1797

    Article  MathSciNet  Google Scholar 

  • Jaccard P (1901) Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bull Soc Vaudoise Sci Nat 37:241–272

    Google Scholar 

  • John R, Innocent P, Barnes M (1998) Type 2 fuzzy sets and neuro-fuzzy clustering of radiographic tibia images. In: 1998 IEEE international conference on fuzzy systems proceedings. IEEE world congress on computational intelligence (Cat. No. 98CH36228), vol 2. IEEE, pp 1373–1376

  • Jun Y (2014) Vector similarity measures of hesitant fuzzy sets and their multiple attribute decision making. Econ Comput Econ Cybern Stud Res 48(4)

  • Karaaslan F, Hunu F (2020) Type-2 single-valued neutrosophic sets and their applications in multi-criteria group decision making based on topsis method. J Ambient Intell Humaniz Comput 11(10):4113–4132

    Article  Google Scholar 

  • Karaaslan F, Özlü Ş (2020) Correlation coefficients of dual type-2 hesitant fuzzy sets and their applications in clustering analysis. Int J Intell Syst 35(7):1200–1229

    Article  Google Scholar 

  • Liao H, Xu Z, Zeng X-J (2014) Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf Sci 271:125–142

    Article  MathSciNet  Google Scholar 

  • Liu H-W (2005) New similarity measures between intuitionistic fuzzy sets and between elements. Math Comput Model 42(1–2):61–70

    Article  MathSciNet  Google Scholar 

  • Liu P, Wang Y (2014) Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted bonferroni mean. Neural Comput Appl 25(7):2001–2010

    Article  Google Scholar 

  • Liu P, Chu Y, Li Y, Chen Y (2014) Some generalized neutrosophic number hamacher aggregation operators and their application to group decision making. Int J Fuzzy Syst 16(2)

  • Mitchell H (2006) Correlation coefficient for type-2 fuzzy sets. Int J Intell Syst 21(2):143–153

    Article  Google Scholar 

  • Mitchell H (2006) Ranking type-2 fuzzy numbers. IEEE Trans Fuzzy Syst 14(2):287–294

    Article  Google Scholar 

  • Mizumoto M, Tanaka K (1976) Some properties of fuzzy sets of type 2. Inf Control 31(4):312–340

    Article  MathSciNet  Google Scholar 

  • Mizumoto M, Tanaka K (1981) Fuzzy sets and type 2 under algebraic product and algebraic sum. Fuzzy Sets Syst 5(3):277–290

    Article  MathSciNet  Google Scholar 

  • Nieminen J (1977) On the algebraic structure of fuzzy sets of type 2. Kybernetika 13(4):261–273

    MathSciNet  MATH  Google Scholar 

  • Özlü Ş, Karaaslan F (2020) Some distance measures for type 2 hesitant fuzzy sets and their applications to multi-criteria group decision-making problems. Soft Comput 24(13):9965–9980

    Article  Google Scholar 

  • Pramanik S, Mondal K (2015) Some rough neutrosophic similarity measure and their application to multi attribute decision making. Global J Eng Sci Res Manag 2(7):61–74

    Google Scholar 

  • Salton G, McGill MJ (1983) Introduction to modern information retrieval. Mcgraw-Hill

  • Singh P (2014) Some new distance measures for type-2 fuzzy sets and distance measure based ranking for group decision making problems. Front Comp Sci 8(5):741–752

    Article  MathSciNet  Google Scholar 

  • Smarandache F (2001) First international conference on neutrosophy, neutrosophic logic, set, probability and statistics. Florentin Smarandache 4

  • Turksen IB (1986) Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst 20(2):191–210

    Article  MathSciNet  Google Scholar 

  • Wagenknecht M, Hartmann K (1988) Application of fuzzy sets of type 2 to the solution of fuzzy equations systems. Fuzzy Sets Syst 25(2):183–190

    Article  MathSciNet  Google Scholar 

  • Wang H, Madiraju P, Zhang Y, Sunderraman R (2004) Interval neutrosophic sets. arXiv preprint math/0409113

  • Wang H, Smarandache F, Zhang Y, Sunderraman R (2010) Single valued neutrosophic sets. Infinite study

  • Wu D, Mendel JM (2009) A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf Sci 179(8):1169–1192

    Article  MathSciNet  Google Scholar 

  • Xu X, Zhang L, Wan Q (2012) A variation coefficient similarity measure and its application in emergency group decision-making. Syst Eng Proc 5:119–124

    Article  Google Scholar 

  • Yager RR (1980) Fuzzy subsets of type ii in decisions. Cybern Syst 10(1–3):137–159

    MathSciNet  Google Scholar 

  • Ye J (2014) Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making. Infinite Study

  • Ye J (2012) Multicriteria decision-making method using the dice similarity measure between expected intervals of trapezoidal fuzzy numbers. J Decis Syst 21(4):307–317

    Article  Google Scholar 

  • Ye J (2012) Multicriteria decision-making method using the dice similarity measure based on the reduct intuitionistic fuzzy sets of interval-valued intuitionistic fuzzy sets. Appl Math Model 36(9):4466–4472

    Article  MathSciNet  Google Scholar 

  • Ye J (2013a) Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int J Gen Syst 42(4):386–394

    Article  MathSciNet  Google Scholar 

  • Ye J (2013b) Another form of correlation coefficient between single valued neutrosophic sets and its multiple attribute decision-making method. Neutrosoph Sets Syst 1(1):8–12

    Google Scholar 

  • Ye J (2014) Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J Intell Fuzzy Syst 26(1):165–172

    Article  Google Scholar 

  • Ye J (2014a) Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl Math Model 38(3):1170–1175

    Article  MathSciNet  Google Scholar 

  • Ye J (2014b) A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J Intell Fuzzy Syst 26(5):2459–2466

    Article  MathSciNet  Google Scholar 

  • Ye J (2015) Multiple attribute decision-making method based on the possibility degree ranking method and ordered weighted aggregation operators of interval neutrosophic numbers. J Intell Fuzzy Syst 28(3):1307–1317

    Article  MathSciNet  Google Scholar 

  • Ye J (2016) Similarity measures of intuitionistic fuzzy sets based on cosine function for the decision making of mechanical design schemes. J Intell Fuzzy Syst 30(1):151–158

    Article  Google Scholar 

  • Ye J (2016) The generalized dice measures for multiple attribute decision making under simplified neutrosophic environments. J Intell Fuzzy Syst 31(1):663–671

    Article  Google Scholar 

  • Ye S, Ye J (2014) Dice similarity measure between single valued neutrosophic multisets and its application in medical diagnosis. Neutrosoph Sets Syst 6(1):9

    Google Scholar 

  • Zadeh LA (1996) Fuzzy sets. In: Zadeh LA (ed) Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. World Scientific, pp 394–432

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendices

A Appendices

1.1 A.1

  1. (P1)

    Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {D}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, let us prove that \(\mathbb {D}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). Since \( x^2+y^2\ge 2xy\), we have for all \(\tau _i\in \mathfrak {X} (i=1,2,\ldots ,n)\)

    $$\begin{aligned}&(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\ge 2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\ge 2 \mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2\ge 2 \mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i). \end{aligned}$$

    and \(\forall \tau _i\in \mathfrak {X}\)

    $$\begin{aligned} \mathbb {D}_{SVT2NS}(\mathfrak {A}, \mathfrak {B}) =\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2f_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] } \le 1. \end{aligned}$$

    Thus, for \(i=1,2,\ldots ,n\)

    $$\begin{aligned}&=\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _1) \mathfrak {t}_{\mathfrak {B}_p}(\tau _1)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _1) \mathfrak {t}_{\mathfrak {B}_s}(\tau _1)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _1)\mathfrak {h}_{\mathfrak {B}_p}(\tau _1) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _1)\mathfrak {h}_{\mathfrak {B}_s}(\tau _1)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _1)\mathfrak {f}_{\mathfrak {B}_p}(\tau _1)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _1)\mathfrak {f}_{\mathfrak {B}_s}(\tau _1)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _1))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _1))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _1))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _1))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _1))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _1))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _1))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _1))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _1))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _1))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _1))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _1))^2 \end{array}\right] } +\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _2) \mathfrak {t}_{\mathfrak {B}_p}(\tau _2)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _2) \mathfrak {t}_{\mathfrak {B}_s}(\tau _2)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _2)\mathfrak {h}_{\mathfrak {B}_p}(\tau _2) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _2)\mathfrak {h}_{\mathfrak {B}_s}(\tau _2)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _2)\mathfrak {f}_{\mathfrak {B}_p}(\tau _2)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _2)\mathfrak {f}_{\mathfrak {B}_s}(\tau _2)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _2))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _2))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _2))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _2))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _2))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _2))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _2))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _2))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _2))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _2))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _2))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _2))^2 \end{array}\right] }\\&\quad + \vdots + \frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _n) \mathfrak {t}_{\mathfrak {B}_p}(\tau _n)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _n) \mathfrak {t}_{\mathfrak {B}_s}(\tau _n)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _n)\mathfrak {h}_{\mathfrak {B}_p}(\tau _n) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _n)\mathfrak {h}_{\mathfrak {B}_s}(\tau _n)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _n)\mathfrak {f}_{\mathfrak {B}_p}(\tau _n)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _n)\mathfrak {f}_{\mathfrak {B}_s}(\tau _n)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _n))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _n))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _n))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _n))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _n))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _n))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _n))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _n))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _n))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _n))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _n))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _n))^2 \end{array}\right] } \le 1+1+\cdots +1 \end{aligned}$$

    Then, if collection is made from side to side;

    $$\begin{aligned}&\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{A _s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] }\le n \frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] }\le 1 \end{aligned}$$
  2. (P2)

    if \(\mathfrak {A}=\mathfrak {B}\),

    $$\begin{aligned}&\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + 2(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +2(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ 2(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }{\left[ \begin{array}{l}2 (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + 2(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +2(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ 2(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }=1 \end{aligned}$$
  3. (P3)

    if \(\mathfrak {A}\) and \(\mathfrak {B}\) are swapped;

    $$\begin{aligned}&\mathbb {D}_{SVT2NS}(\mathfrak {A}, \mathfrak {B}) =\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] }\\&\quad =\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {B}_p}(\tau _i) \mathfrak {t}_{\mathfrak {A}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {B}_s}(\tau _i) \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\mathfrak {h}_{\mathfrak {A}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] } =\mathbb {D}_{SVT2NS}(\mathfrak {B}, \mathfrak {A}). \end{aligned}$$

1.2 A.2

  1. (P1)

    Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {J}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we need only show that \(\mathbb {J}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). We know that for all \(x,y\in R\), \( x^2+y^2-xy\ge xy\), then for all \(\tau _i\in \mathfrak {X}\) we get

    $$\begin{aligned}&(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i). \end{aligned}$$

    Therefore, for all \(\tau _i\in \mathfrak {X},\)

    $$\begin{aligned}&\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) \\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }\le 1 \end{aligned}$$

    and for \(i=1,2,\ldots ,n\);

    $$\begin{aligned} \sum _{i=1}^n\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }\le n. \end{aligned}$$

    It is conclude that if the operation is applied with \(\frac{1}{n}\); \(\mathbb {J}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})=\)

    $$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }\le 1. \end{aligned}$$
  2. (P2)

    if \(\mathfrak {A}=\mathfrak {B}\),

    $$\begin{aligned}&\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }=1 \end{aligned}$$
  3. (P3)

    if SVNT2Ss \(\mathfrak {A},\mathfrak {B}\) are swapped;

    $$\begin{aligned}&\mathbb {J}_{SVT2NS}(\mathfrak {A}, \mathfrak {B}) =\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }\\&\quad =\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {B}_p}(\tau _i) \mathfrak {t}_{\mathfrak {A}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {B}_s}(\tau _i) \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\mathfrak {h}_{\mathfrak {A}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {B}_p}(\tau _i) \mathfrak {t}_{\mathfrak {A}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {B}_s}(\tau _i) \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\\ \end{array}\right] }\\&\quad =\mathbb {J}_{SVT2NS}(\mathfrak {B}, \mathfrak {A}). \end{aligned}$$

1.3 A.3

  1. (P1)

    Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {C}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Thus, we need only show that \(\mathbb {C}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). Here

    $$\begin{aligned}&\sum _{i=1}^n\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] =\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _1) \mathfrak {t}_{\mathfrak {B}_p}(\tau _1)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _1) \mathfrak {t}_{\mathfrak {B}_s}(\tau _1)+\mathfrak {h}_{\mathfrak {A}_p}(\tau _1)\mathfrak {h}_{\mathfrak {B}_p}(\tau _1)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _1)\mathfrak {h}_{\mathfrak {B}_s}(\tau _1)+\mathfrak {f}_{\mathfrak {A}_p}(\tau _1) \mathfrak {f}_{\mathfrak {B}_p}(\tau _1)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _1)\mathfrak {f}_{\mathfrak {B}_s}(\tau _1)\\ \end{array}\right] \\&\quad +\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _2) \mathfrak {t}_{\mathfrak {B}_p}(\tau _2)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _2) \mathfrak {t}_{\mathfrak {B}_s}(\tau _2)+\mathfrak {h}_{\mathfrak {A}_p}(\tau _2)\mathfrak {h}_{\mathfrak {B}_p}(\tau _2)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _2)\mathfrak {h}_{\mathfrak {B}_s}(\tau _2)+\mathfrak {f}_{\mathfrak {A}_p}(\tau _2)\mathfrak {f}_{\mathfrak {B}_p}(\tau _2)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _2)\mathfrak {f}_{\mathfrak {B}_s}(\tau _2)\\ \end{array}\right] + \vdots + \left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _n) \mathfrak {t}_{\mathfrak {B}_p}(\tau _n)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _n) \mathfrak {t}_{\mathfrak {B}_s}(\tau _n)+\mathfrak {h}_{\mathfrak {A}_p}(\tau _n)\mathfrak {h}_{\mathfrak {B}_p}(\tau _n)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _n)\mathfrak {h}_{\mathfrak {B}_s}(\tau _n)+\mathfrak {f}_{\mathfrak {A}_p}(\tau _2)\mathfrak {f}_{\mathfrak {B}_p}(\tau _n)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _n)\mathfrak {f}_{\mathfrak {B}_s}(\tau _n)\\ \end{array}\right] . \end{aligned}$$

    By using Cauchy-Schwarz inequality, we can write the following inequality:

    $$\begin{aligned}&(\mathbb {C}_{SVT2NS}(\mathfrak {A}, \mathfrak {B}))^2 \le \Big [(\mathfrak {t}_{\mathfrak {A}_p}(\tau _1))^2+ (\mathfrak {t}_{\mathfrak {A}_s}(\tau _1))^2+ (\mathfrak {h}_{\mathfrak {A}_p}(\tau _1))^2+ (\mathfrak {h}_{\mathfrak {A}_s}(\tau _1))^2+ (\mathfrak {f}_{\mathfrak {A}_p}(\tau _1))^2\\&\quad +(\mathfrak {f}_{\mathfrak {A}_s}(\tau _1))^2 + (\mathfrak {t}_{\mathfrak {A}_p}(\tau _2))^2 + (\mathfrak {t}_{\mathfrak {A}_s}(\tau _2))^2+ (\mathfrak {h}_{\mathfrak {A}_p}(\tau _2))^2+ (\mathfrak {h}_{\mathfrak {A}_s}(\tau _2))^2\\&\quad + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _2))^2+ (\mathfrak {f}_{\mathfrak {A}_s}(\tau _2))^2 + \cdots + (\mathfrak {t}_{\mathfrak {A}_p}(\tau _n))^2+( \mathfrak {t}_{\mathfrak {A}_s}(\tau _n))^2+ (\mathfrak {h}_{\mathfrak {A}_p}(\tau _n))^2\\&\quad + (\mathfrak {h}_{\mathfrak {A}_s}(\tau _n))^2+( \mathfrak {f}_{\mathfrak {A}_p}(\tau _n))^2+ (\mathfrak {f}_{\mathfrak {A}_s}(\tau _n))^2\Big ]\times \Big [(\mathfrak {t}_{\mathfrak {B}_p}(\tau _1))^2+( \mathfrak {t}_{\mathfrak {B}_s}(\tau _1))^2\\&\quad + (\mathfrak {h}_{\mathfrak {B}_p}(\tau _1))^2+ (\mathfrak {h}_{\mathfrak {B}_s}(\tau _1))^2+ (\mathfrak {f}_{\mathfrak {B}_p}(\tau _1))^2+( \mathfrak {f}_{\mathfrak {B}_s}(\tau _1))^2 + (\mathfrak {t}_{\mathfrak {B}_p}(\tau _2))^2\\&\quad +( \mathfrak {t}_{\mathfrak {B}_s}(\tau _2))^2+( \mathfrak {h}_{\mathfrak {B}_p}(\tau _2))^2+ (\mathfrak {h}_{\mathfrak {B}_s}(\tau _2))^2+ (\mathfrak {f}_{\mathfrak {B}_p}(\tau _2))^2+ (\mathfrak {f}_{\mathfrak {B}_s}(\tau _2))^2 \\&\quad + \cdots + (\mathfrak {t}_{\mathfrak {B}_p}(\tau _n))^2+( \mathfrak {t}_{\mathfrak {B}_s}(\tau _n))^2( \mathfrak {h}_{\mathfrak {B}_p}(\tau _n))^2+( \mathfrak {h}_{\mathfrak {B}_s}(\tau _n))^2+( \mathfrak {f}_{\mathfrak {B}_p}(\tau _n))^2 +(\mathfrak {f}_{\mathfrak {B}_s}(\tau _n))^2\Big ]. \end{aligned}$$

    It is concluded that \(\mathbb {C}_{SVNT2FS}(\mathfrak {A}, \mathfrak {B})\le 1\).

  2. (P2)

    It can be easily indicated from below proofs.

  3. (P3)

    It can be made with similar way to below proofs.

1.4 A.4

  1. (P1)

    Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {D}_{WSVNT2FS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we must only show that \(\mathbb {D}_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). Since for all \(x, y\in R,\) \(x^2+y^2\ge 2xy\), for all \(\tau _i \in \mathfrak {X} (i=1,2,\ldots ,n)\),

    $$\begin{aligned}&(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\ge 2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\ge 2 \mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2\ge 2 \mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i). \end{aligned}$$

    and

    $$\begin{aligned} \frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] } \le 1. \end{aligned}$$
    (-16)

    If the last inequality is adopted as \(\mathcal {D}_i, (i=1,2,\ldots ,n)\), for \(w_i\in [0,1]\), \(\sum _{i=1}^nw_i=1\) and \(\mathcal {D}_i\in [0,1]\) we get the following inequalities

    $$\begin{aligned} w_1\mathcal {D}_1+w_2\mathcal {D}_2+\cdots +w_n\mathcal {D}_n\le w_1+w_2+\cdots +w_n=1 \end{aligned}$$

    and

    $$\begin{aligned}&\sum _{i=1}^n(w_i)\mathcal {D}_i=\sum _{i=1}^n(w_i)\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] }\le 1 \end{aligned}$$
  2. (P2)

    If \(\mathfrak {A}=\mathfrak {B}\), for all \(\tau _i\in \mathfrak {X}\)

    $$\begin{aligned} \frac{\left[ \begin{array}{l}2 (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + 2(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +2(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ 2(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }{\left[ \begin{array}{l}2 (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + 2(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +2(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ 2(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }\\ =1. \end{aligned}$$
    (-15)

    If we use notation \(\mathcal {P}_i\) \((i=1,2,\ldots ,n)\) for -15, we have

    $$\begin{aligned} w_1\mathcal {P}_1+w_2\mathcal {P}_2+\cdots +w_n\mathcal {P}_n \le w_1+w_2+\cdots +w_n=1. \end{aligned}$$

    Thus,

    $$\begin{aligned} \mathbb {D}_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})=\sum _{i=1}^n (w_i)\mathcal {P}_i=1. \end{aligned}$$
  3. (P3)

    It can be easily indicated from below proofs.

1.5 A.5

  1. (P1)

    Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {J}_{WSVNT2FS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we must show that \(\mathbb {J}_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). For all \(x,y\in \mathbb {R}\), \( x^2+y^2-xy\ge xy\). Then for all \(\tau _i\in \mathfrak {X}\),

    $$\begin{aligned}&(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2 -\mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 +(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i). \end{aligned}$$

    Thus,

    $$\begin{aligned}&\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\\ \mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\\ \mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] } \le 1. \end{aligned}$$
    (-15)

    If equation -14 is denoted by \(\mathcal {J}_i (i=1,2,\ldots ,n)\), we have

    $$\begin{aligned} w_1\mathcal {J}_1+w_2\mathcal {J}_2+\cdots w_n\mathcal {J}_n\le w_1+w_2+\cdots w_n=1. \end{aligned}$$

    Then,

    $$\begin{aligned}&\mathbb {J}_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})= \sum _{i=1}^n(w_i)\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\\ \mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\\ \mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] } \le 1 \end{aligned}$$
  2. (P2)

    It can be easily indicated below proofs.

  3. (P3)

    It is open from previous proofs.

1.6 A.6

  1. (P1)

    Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is clear that \(Hyb_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we must show that \(Hyb_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\) as follow. \(\lambda \mathbb {D}_{SVT2NS}+(1-\lambda )\mathbb {C}_{SVT2NS}\le \lambda + (1-\lambda ) =1 \) from here \(Hyb_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\) where \(0\le \mathbb {D}_{SVT2NS}\le 1\) and \(0\le \mathbb {C}_{SVT2NS}\le 1\) for \(\lambda \in [0,1]\).

  2. (P2)

    We know that each both SMs are open from below \(\mathbb {C}_{SVT2NS}=1\) and \(\mathbb {D}_{SVT2NS}=1\) for \(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\), \(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\), \(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\), \(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\), \(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\) and \(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\) and \(i=1,\ldots ,n\). Therefore, \(Hyb_{SVT2NS}(\mathfrak {A},\mathfrak {B})=1\).

  3. (P3)

    The both SMs provide symmetric property from below. So, \(Hyb_{SVT2NS}(\mathfrak {A},\mathfrak {B})\) carry symmetric property.

1.7 A.7

  1. (P1)

    Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(Hyb_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we must prove that \(Hyb_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\) as follow. \(\lambda \mathbb {D}_{WSVT2NS}+(1-\lambda )\mathbb {C}_{SVT2NS}\le \lambda + (1-\lambda ) =1 \) from here \(Hyb_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\) where \(0\le \mathbb {D}_{WSVT2NS}\le 1\) and \(0\le \mathbb {C}_{WSVT2NS}\le 1\) for \(\lambda \in [0,1]\).

  2. (P2)

    We know that each both SMs are open from below \(\mathbb {C}_{WSVT2NS}=1\) and \(\mathbb {D}_{WSVT2NS}=1\) for \(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\), \(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\), \(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\), \(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\), \(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\) and \(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\) and \(i=1,\ldots ,n\). Therefore, \(Hyb_{WSVT2NS}(\mathfrak {A},\mathfrak {B})=1\).

  3. (P3)

    The both SMs provide symmetric property from below. So, \(Hyb_{WSVT2NS}(\mathfrak {A},\mathfrak {B})\) satisfies symmetric property.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özlü, Ş., Karaaslan, F. Hybrid similarity measures of single-valued neutrosophic type-2 fuzzy sets and their application to MCDM based on TOPSIS. Soft Comput 26, 4059–4080 (2022). https://doi.org/10.1007/s00500-022-06824-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-06824-3

Keywords

Navigation