Skip to main content
Log in

Non-normal fuzzy number analysis in various levels using centroid method for fuzzy optimization

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In the present article, a level analysis has been improved for various types of fuzzy numbers. In spite of non-normal fuzzy number ranking with more parameters are difficult, this analysis gives a clear idea for the non-normal case. The rank value may vary for different levels of various fuzzy numbers. The authors of this study essentially deal with the ranking approach, which is suitable to analyze three different fuzzy numbers, namely TrapFN, HFN, and HDFN, in the entire possible levels. The varying rank value in the fuzzy numbers can be identified by using the centroid ranking approach. Finally, a comparative analysis is given to demonstrate the advantages of the proposed analysis for fuzzy numbers levels. It is shown that the variation in ranking values of TrapFN, HFN, and HDFN is computed in a more efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasbandy S, Asady B (2006) Ranking of fuzzy numbers by sign distance. Inf Sci 176(16):2405–2416

    Article  MathSciNet  Google Scholar 

  • Abdullah L, Jamal J (2010) Centroid-point of ranking fuzzy numbers and its application to health related quality of life indicators. Int J Comput Sci Eng 2(8):2773–2777

    Google Scholar 

  • Asady B, Zendehnam A (2007) Ranking fuzzy numbers by distance minimization. Appl Math Model 31(11):2589–2598

    Article  Google Scholar 

  • BaldwinGuild JF (1979) Comparison of fuzzy numbers on the same decision space. Fuzzy Sets Syst 2:213–233

    Article  Google Scholar 

  • Başar F (2012) Summability theory and its applications. Betham Science Publishers, Istanbul

    Book  Google Scholar 

  • Bica AM (2007) Algebraic structures for fuzzy number from categorial point of view. Soft Comput 11:1099–1105

    Article  Google Scholar 

  • Chen CC, Tang HC (2008) Ranking of non-normal p-norm trapezoidal fuzzy numbers with integral value. Comput Math Appl 56:2340–2346

    Article  MathSciNet  Google Scholar 

  • Chen SH (1985a) Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst 17(3):113–129

    Article  MathSciNet  Google Scholar 

  • Chen SH (1985b) Operations on fuzzy numbers with function principle. Tamkang J Manag Sci 6:13–25

    MathSciNet  MATH  Google Scholar 

  • Cheng CH (1998) A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst 95:307–317

    Article  MathSciNet  Google Scholar 

  • Chu TC, Tsao C (2002) Ranking fuzzy numbers with an area between the centroid point and the original point. Comput Math Appl 43:111–117

    Article  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1987) Fuzzy numbers: an overview. In: Bezdek JC (ed) Analysis of fuzzy information, mathematics and logic. CRS Press, Boca Raton, pp 3–39

    MATH  Google Scholar 

  • Heilpern S (1997) Representation and application of fuzzy numbers. Fuzzy Sets Syst 91(2):259–268

    Article  MathSciNet  Google Scholar 

  • Hong DH, Moon EL, Kim JD (2010) A note on the core of fuzzy numbers. Appl Math Lett 23:282–285

    Article  MathSciNet  Google Scholar 

  • Lee ES, Li RL (1988) Comparison of fuzzy numbers based on the probability measure of fuzzy events. Comput Math Appl 15(10):887–896

    Article  MathSciNet  Google Scholar 

  • Malini SU, Kennedy CF (2015) A comparison of trapezoidal, octagonal and dodecagonal fuzzy numbers in solving FTP. Int J Math Arch 6(9):100–105

    Google Scholar 

  • Mizumot M, Tanaka K (1979) Some properties of fuzzy numbers. In: Gupta MM, Ragade RK, Yager RR (eds) Advances in fuzzy sets. Theory and applications, North Holland, 153–164

  • Maturo A (2009) On some structures of fuzzy numbers Iran. J Fuzzy Syst 6:49–59

    MathSciNet  MATH  Google Scholar 

  • Qiu D, Zhang W (2013) Symmetric fuzzy numbers and additive equivalence of fuzzy numbers. Soft Comput 17:1471–1477

    Article  Google Scholar 

  • Rathi K, Balamohan S (2014) Representation and ranking of fuzzy numbers with heptagonal membership function using value and ambiguity index. Appl Math Sci 8(87):4309–4321

    Google Scholar 

  • Rathi K, Balamohan S (2016) Comparative study of arithmetic nature of heptagonal fuzzy numbers. Asian J Res Soc Sci Hum 6(7):238–254

    Google Scholar 

  • Rathi K, Balamohan S (2017) A mathematical model for subjective evaluation of alternatives in fuzzy multi-criteria group decision making using COPRAS method. Int J Fuzzy Syst 19(5):1290–1299

    Article  Google Scholar 

  • Rathi K, Balamohan S, Shanmugasundaram P, Revathi M (2015) Fuzzy row penalty method to solve assignment problems with uncertain parameters. Glob J Pure Appl Math 11(1):39–44

    Google Scholar 

  • Revathi M, Saravanan R, Rathi K (2015) A new approach to solve travelling salesman problem under fuzzy environment. Int J Cur Res 7(12):24128–24131

    Google Scholar 

  • Revathi M, Valliathal M, Saravanan R, Rathi K (2017) A new hendecagonal fuzzy number for optimization problems. Int J Trend Sci Res Dev 1(5):326–332

    Google Scholar 

  • Revathi M, Valliathal M (2020a) Pre-training analysis for students placement training using hendecagonal fuzzy number with similarity measure. Int J Ser Oper Manag. https://doi.org/10.1504/IJSOM.2020.10025395 (in press)

    Article  Google Scholar 

  • Revathi M, Valliathal M (2020b) A new approach to find optimal solution of fuzzy assignment problem using penalty method for hendecagonal fuzzy number. Int J Fuzzy Comput Model 3(1):61–74

    Article  Google Scholar 

  • Shieh B-S (2007) An approach to centroid of fuzzy numbers. Int J Fuzzy Syst 9(1):51–54

    Google Scholar 

  • Wang YM, Yang JB, Xu DL, Chin KS (2006) On the centroid of fuzzy numbers. Fuzzy Sets Syst 157(7):919–926

    Article  MathSciNet  Google Scholar 

  • Yager RR (1986) A characterization of extension principle. Fuzzy Sets Syst 18:205–217

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Revathi.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The increasing part of the membership function of HDFN (in Definition 14) is

$$ p_{1} (x) = u\left( {\frac{{x - h_{1} }}{{h_{2} - h_{1} }}} \right){,}\,q_{1} (x) = u + (v - u)\left( {\frac{{x - h_{3} }}{{h_{4} - h_{3} }}} \right)\,and\,r_{1} (x) = v + (\omega - v)\left( {\frac{{x - h_{5} }}{{h_{6} - h_{5} }}} \right) $$
(3)

Which are bounded left continuous non-decreasing functions over \([0,\omega_{1} ]\),\([u,\omega_{2} ]\) and \([v,\omega_{3} ]\), respectively, with \(0 \le \omega_{1} \le u\),\(u < \omega_{2} \le v\),\(v < \omega_{3} \le \omega\).

The decreasing part of the membership function of HDFN (in Definition 14) is

$$ r_{2} (x) = v + (\omega - v)\left( {\frac{{h_{7} - x}}{{h_{7} - h_{6} }}} \right),\,q_{2} (x) = u + (v - u)\left( {\frac{{h_{9} - x}}{{h_{9} - h_{8} }}} \right)\,and,\,p_{2} (x) = u\left( {\frac{{h_{11} - x}}{{h_{11} - h_{10} }}} \right) \, $$
(4)

Which are bounded right continuous non-increasing functions over \([0,\omega_{1} ]\),\([u,\omega_{2} ]\) and \([v,\omega_{3} ]\), respectively, with \(0 \le \omega_{1} \le u\), \(u < \omega_{2} \le v\), \(v < \omega_{3} \le \omega\).

For \(\alpha \in (0,1]\), the \(\alpha - cut\) of HDFN, \(\widetilde{HD} = (h_{1} ,h_{2} ,h_{3} ,h_{4} ,h_{5} ,h_{6} ,h_{7} ,h_{8} ,h_{9} ,h_{10} ,h_{11} ;u,v,\omega )\), using Eqs. 3 and 4, is defined as

$$ \left[ {\widetilde{HD}} \right]_{\alpha } = \left\{ \begin{gathered} [HD_{1}^{L\alpha} ,HD_{1}^{R\alpha}]\,{\text{for}}\,\alpha \in {\text{[0,u]}} \hfill \\ [HD_{2}^{L\alpha},HD_{2}^{R\alpha} ]\,{\text{for}}\,\alpha \in {\text{(u,}}v{]} \hfill \\ [HD_{3}^{L\alpha}, HD_{3}^{R\alpha}]\,{\text{for}}\,\alpha \in {\text{(v,}}\omega {]} \hfill \\ \end{gathered} \right. $$

where \({\text{HD}}_{1\alpha }^{L} = h_{1} + \frac{\alpha }{u}(h_{2} - h_{1} )\), \(HD_{1\alpha }^{R} = h_{11} - \frac{\alpha }{u}(h_{11} - h_{10} )\),

$$ \begin{gathered} HD_{2\alpha }^{L} = h_{3} + \left( {\frac{\alpha - u}{{v - u}}} \right)(h_{4} - h_{3} ),\,HD_{2\alpha }^{R} = h_{9} - \left( {\frac{\alpha - u}{{v - u}}} \right)(h_{9} - h_{8} ) \hfill \\ HD_{3\alpha }^{L} = h_{5} + \left( {\frac{\alpha - v}{{\omega - v}}} \right)(h_{6} - h_{5} ),\,HD_{3\alpha }^{R} = h_{7} - \left( {\frac{\alpha - v}{{\omega - v}}} \right)(h_{7} - h_{6} ). \hfill \\ \end{gathered} $$
(5)

Using Eqs. (1) and (5) the centroid formulae \((\tilde{x}_{0} ,\tilde{y}_{0} )\) for the HDFN is defined as follows:

$$ \begin{aligned} & \tilde{x}_{0} (\widetilde{HD}) = \frac{{\int\limits_{ - \infty }^{\infty } {x\mu_{{\tilde{H}D}} (x)dx} }}{{\int\limits_{ - \infty }^{\infty } {\mu_{{\tilde{H}D}} (x)dx} }} = \frac{{\int\limits_{{h_{1} }}^{{h_{2} }} {xp_{1} (x)dx} + \int\limits_{{h_{2} }}^{{h_{3} }} {uxdx} + \int\limits_{{h_{3} }}^{{h_{4} }} {xq_{1} (x)dx + \int\limits_{{h_{4} }}^{{h_{5} }} {vxdx} + } \int\limits_{{h_{5} }}^{{h_{6} }} {xr_{1} (x)dx + } \int\limits_{{h_{6} }}^{{h_{7} }} {xr_{2} \left( x \right)dx} + \int\limits_{{h_{7} }}^{{h_{8} }} {vxdx} + \int\limits_{{h_{8} }}^{{h_{9} }} {xq_{2} (x)dx} + \int\limits_{{h_{9} }}^{{h_{10} }} {uxdx} + \int\limits_{{h_{10} }}^{{h_{11} }} {xp_{2} (x)dx} }}{{\int\limits_{{h_{1} }}^{{h_{2} }} {p_{1} (x)dx} + \int\limits_{{h_{2} }}^{{h_{3} }} {udx} + \int\limits_{{h_{3} }}^{{h_{4} }} {q_{1} (x)dx} + \int\limits_{{h_{4} }}^{{h_{5} }} {vdx} + \int\limits_{{h_{5} }}^{{h_{6} }} {r_{1} (x)dx} + \int\limits_{{h_{6} }}^{{h_{7} }} {r_{2} (x)dx + \int\limits_{{h_{7} }}^{{h_{8} }} {vdx + \int\limits_{{h_{8} }}^{{h_{9} }} {q_{2} (x)dx + \int\limits_{{h_{9} }}^{{h_{10} }} {udx + \int\limits_{{h_{10} }}^{{h_{11} }} {p_{2} (x)dx} } } } } }} \\ & and \\ & \tilde{y}_{0} (\widetilde{HD}) = \frac{{\int\limits_{0}^{\omega } {\alpha |HD_{\alpha } |d\alpha } }}{{\int\limits_{0}^{\omega } {|HD_{\alpha } |d\alpha } }} = \frac{{\int\limits_{0}^{u} {\alpha [HD_{1\alpha }^{R} - HD_{1\alpha }^{L} ]d\alpha } + \int\limits_{u}^{v} {\alpha [HD_{2\alpha }^{R} - HD_{2\alpha }^{L} ]d\alpha + \int\limits_{v}^{\omega } {\alpha [HD_{3\alpha }^{R} - HD_{3\alpha }^{L} ]d\alpha } } }}{{\int\limits_{0}^{u} {[HD_{1\alpha }^{R} - HD_{1\alpha }^{L} ]d\alpha } + \int\limits_{u}^{v} {[HD_{2\alpha }^{R} - HD_{2\alpha }^{L} ]d\alpha + \int\limits_{v}^{\omega } {[HD_{3\alpha }^{R} - HD_{3\alpha }^{L} ]d\alpha } } }} \\ \end{aligned} $$
(6)

Solving Eq. (6), we get the pair of centroid formulae \((\tilde{x}_{0} ,\tilde{y}_{0} )\) for the HDFN as:

$$ \begin{aligned} \tilde{x}_{0} (\widetilde{HD}) & = \frac{1}{3}\left[ {\frac{{u\left[ {\left( {h_{11}^{2} + h_{10}^{2} + h_{10} h_{11} } \right) - \left( {h_{1}^{2} + h_{2}^{2} + h_{1} h_{2} } \right)} \right] + \left( {v - u} \right)\left[ {\left( {h_{9}^{2} + h_{8}^{2} + h_{9} h_{8} } \right) - \left( {h_{3}^{2} + h_{4}^{2} + h_{3} h_{4} } \right)} \right] + \left( {\omega - v} \right)\left( {h_{5} + h_{6} + h_{7} } \right)\left( {h_{7} - h_{5} } \right)}}{{u\left( {h_{11} - h_{1} + h_{10} - h_{2} } \right) + \left( {v - u} \right)\left( {h_{9} - h_{3} + h_{8} - h_{4} } \right) + \left( {\omega - v} \right)\left( {h_{7} - h_{5} } \right)}}} \right] \\ \tilde{y}_{0} (\widetilde{HD}) & = \frac{1}{3}\left[ {\frac{{u^{2} \left( {h_{11} - h_{1} + h_{10} - h_{2} } \right) + \left( {v - u} \right)\left[ {\left( {v + 2u} \right)\left( {h_{9} - h_{3} } \right) + \left( {u + 2v} \right)\left( {h_{8} - h_{4} } \right)} \right] + \left( {\omega - v} \right)\left( {2v + \omega } \right)\left( {h_{7} - h_{5} } \right)}}{{u\left( {h_{11} - h_{1} + h_{10} - h_{2} } \right) + \left( {v - u} \right)\left( {h_{9} - h_{3} + h_{8} - h_{4} } \right) + \left( {\omega - v} \right)\left( {h_{7} - h_{5} } \right)}}} \right] \\ \end{aligned} $$
(7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathi, M., Valliathal, M. Non-normal fuzzy number analysis in various levels using centroid method for fuzzy optimization. Soft Comput 25, 8957–8969 (2021). https://doi.org/10.1007/s00500-021-05794-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05794-2

Keywords

Navigation