Skip to main content
Log in

A new effective robust nonlinear controller based on PSO for interleaved DC–DC boost converters for fuel cell voltage regulation

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Output voltage regulation of DC–DC converters has recently gained an increasing attention to face the many system nonidealities. The fast switching behavior is nonlinear time varying, the presence of model and measurement uncertainties, and large variations, are all inherited challenges. The aim of the present work is to design a robust nonlinear controller that ensures satisfactory and robust output voltage regulation for a proton-exchange membrane fuel cell (PEMFC) based on a DC–DC Interleaved Boost Converter (IBC). A state-space model of the DC–DC IBC is first derived using the state-space averaging technique, and a mathematical model is constructed for the PEFMC. In this regard, a robust nonlinear controller and a proportional integral controller are proposed. The controllers are tuned though particle swarm optimization algorithm to estimate their good parameters assuring the desired performance is met. The integral of absolute error criterion is used to improve the dynamic performance of the overall controlled system. Furthermore, the closed-loop stability is analyzed using the Lyapunov stability theorem, and the effectiveness of the closed-loop system is validated under various operating conditions of the PEMFC and load perturbations. Compared to other methods, the obtained results demonstrate a superior performance of the proposed control strategy in terms of its robustness to variations and uncertainties, smooth tracking of a varying set-point and faster transients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

PEMFC:

Proton-exchange membrane fuel cell

IBC:

Interleaved boost converter

PI:

Proportional integral

PSO:

Particle swarm optimization

IAE:

Integral of absolute error

FCs:

Fuel cells

EVs:

Electric vehicles

MPC:

Model predictive control

LTI:

Linear time-invariant

PSO-PIC:

PSO-tuned PI controller

PSO-RNC:

PSO-tuned robust nonlinear controller

\( V_{c} \) :

The output voltage

\( V_{\text{fc}} \) :

The fuel cell source voltage

L :

The inductance

C :

The capacitance

\( D_{1} ,D_{2} \) :

The duty cycles of each phase

\( I_{{L_{1} }} ,I_{{L_{2} }} \) :

The inductors current

\( I_{\text{fc}} \) :

The fuel cell current

\( I_{\text{R}} \) :

The resistor load current

\( I_{\text{c}} \) :

The capacitor current

\( u \) :

The average duty cycle

\( z \) :

Number of moving electrons (z = 2)

\( E_{\text{n}} \) :

Nernst voltage (V)

\( \alpha \) :

Charge transfer coefficient

\( P_{{{\text{H}}2}} \) :

Partial pressure of hydrogen inside the stack (atm)

\( P_{{{\text{O}}2}} \) :

Partial pressure of oxygen inside the stack (atm)

k :

Boltzmann’s constant (1.38 × 10 − 23 J/K)

h :

Planck’s constant (6.626 × 10 − 34 J s)

ΔG:

Activation energy barrier (J)

T :

Temperature of operation (K)

\( Kc \) :

Voltage constant at nominal condition of operation

\( P_{\text{fuel}} \) :

Absolute supply pressure of fuel (atm)

\( P_{\text{air}} \) :

Absolute supply pressure of air (atm)

\( V_{\text{fuel}} \) :

Fuel flow rate (l/min)

\( V_{\text{air}} \) :

Air flow rate (l/min)

\( P_{{{\text{H}}_{2} {\text{O}}}} \) :

Partial pressure of water vapor (atm)

\( w \) :

Percentage of water vapor in the oxidant (%)

\( E \) :

The controlled voltage source

\( E_{\text{oc}} \) :

Open circuit voltage (V)

\( N \) :

Number of cells

\( A_{f} \) :

Tafel slope (V)

\( i_{0} \) :

Exchange current (A)

\( T_{d} \) :

The response time (at 95% of the final value)

\( R_{\text{ohm}} \) :

Internal resistance (Ω)

\( i_{\text{fc}} \) :

Fuel cell current (A)

\( V_{\text{fc}} \) :

Fuel cell voltage (V)

\( x_{h} \) :

Percentage of hydrogen in the fuel (%)

\( y_{h} \) :

Percentage of oxygen in the oxidant (%)

\( V_{\text{cref}} \) :

Desired voltage

\( I_{\text{fcd}} \) :

Desired fuel cell current

\( k_{1} , k_{2} ,k_{3} \) :

Parameters of the proposed controller

\( K_{p} ,K_{i} \) :

Parameters of the PI controller

\( t \) :

The iteration number

\( j \) :

The particle number

\( p_{j} \) :

The individual best solution of particle \( j \) at a given stage

\( p_{g} \) :

The global best solution

\( C_{1} ,C_{2} \) :

The acceleration parameters

\( r_{1} ,r_{2} \) :

Random numbers uniformly distributed

References

  • Abbaspour A, Khalilnejad A, Chen Z (2016) Robust adaptive neural network control for PEM fuel cell. Int J Hydrogen Energy 41(44):20385–20395

    Google Scholar 

  • Abdelmalek S, Barazane L, Larabi A, Bettayeb M (2016) A novel scheme for current sensor faults diagnosis in the stator of a DFIG described by a TS fuzzy model. Measurement 91:680–691

    Google Scholar 

  • Abdelmalek S, Barazane L, Larabi A (2017) An advanced robust fault-tolerant tracking control for a doubly fed induction generator with actuator faults. Turk J Electr Eng Comput Sci 25(2):1346–1357

    Google Scholar 

  • Abdelmalek S, Azar AT, Dib D (2018a) A novel actuator fault-tolerant control strategy of DFIG-based wind turbines using Takagi–Sugeno multiple models. Int J Control Autom Syst 16(3):1415–1424

    Google Scholar 

  • Abdelmalek S, Dali A, Bettayeb M (2018b) An improved observer-based integral state feedback (OISF) control strategy of flyback converter for photovoltaic systems. In: 2018 international conference on electrical sciences and technologies in Maghreb (CISTEM). IEEE, pp 1–6

  • Bakdi A, Bounoua W, Mekhilef S, Halabi LM (2019a) Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV. Energy 189:116366. https://doi.org/10.1016/j.energy.2019.116366

    Article  Google Scholar 

  • Bakdi A, Kouadri A, Mekhilef S (2019b) A data-driven algorithm for online detection of component and system faults in modern wind turbines at different operating zones. Renew Sustain Energy Rev 103:546–555

    Google Scholar 

  • Bankupalli PT, Ghosh S, Kumar L, Samanta S (2018) Fractional order modeling and two loop control of PEM fuel cell for voltage regulation considering both source and load perturbations. Int J Hydrogen Energy 43(12):6294–6309

    Google Scholar 

  • Barhoumi E, Ben Belgacem I, Khiareddine A, Zghaibeh M, Tlili I (2018) A neural network-based four phases interleaved boost converter for fuel cell system applications. Energies 11(12):3423

    Google Scholar 

  • Bendoukha S, Abdelmalek S, Abdelmalek S (2018) A new combined actuator fault estimation and accommodation for linear parameter varying system subject to simultaneous and multiple faults: an LMIs approach. Soft Comput 23(20):10449–10462

    MATH  Google Scholar 

  • Choe SY, Lee JG, Ahn JW, Baek SH (2007) Integrated modeling and control of a PEM fuel cell power system with a PWM DC/DC converter. J Power Sources 164(2):614–623

    Google Scholar 

  • Dali A, Bouharchouche A, Diaf S (2015) Parameter identification of photovoltaic cell/module using genetic algorithm (GA) and particle swarm optimization (PSO). In: 2015 3rd international conference on control, engineering & information technology (CEIT). IEEE, pp 1–6

  • Dali A, Abdelmalek S, Bettayeb M (2018) A new combined observer-state feedback (COSF) controller of PWM buck converter. In: 2018 international conference on electrical sciences and technologies in Maghreb (CISTEM). IEEE, pp 1–6

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  • El-Hay EA, El-Hameed MA, El-Fergany AA (2018) Improved performance of PEM fuel cells stack feeding switched reluctance motor using multi-objective dragonfly optimizer. Neural Comput Appl 31(11):6909–6924

    Google Scholar 

  • Fernandes D, Almeida R, Guedes T, Sguarezi Filho AJ, Costa FF (2017) State feedback control for DC-photovoltaic systems. Electr Power Syst Res 143:794–801

    Google Scholar 

  • Grötsch M, Mangold M, Kienle A (2009) Analysis of the coupling behavior of PEM fuel cells and DC–DC converters. Energies 2(1):71–96

    Google Scholar 

  • Guilbert D, Gaillard A, N’Diaye A, Djerdir A (2016) Power switch failures tolerance and remedial strategies of a 4-leg floating interleaved DC/DC boost converter for photovoltaic/fuel cell applications. Renew Energy 90:14–27

    Google Scholar 

  • Guilbert D, Collura SM, Scipioni A (2017) DC/DC converter topologies for electrolyzers: State-of-the-art and remaining key issues. Int J Hydrogen Energy 42(38):23966–23985

    Google Scholar 

  • Habib M, Khoucha F, Harrag A (2017) GA-based robust LQR controller for interleaved boost DC–DC converter improving fuel cell voltage regulation. Electr Power Syst Res 152:438–456

    Google Scholar 

  • Hossain MZ, Rahim NA (2018) Recent progress and development on power DC–DC converter topology, control, design and applications: a review. Renew Sustain Energy Rev 81:205–230

    Google Scholar 

  • İnci M, Türksoy Ö (2019) Review of fuel cells to grid interface: configurations, technical challenges and trends. J Clean Prod 213:1353–1370

    Google Scholar 

  • Kirubakaran A, Jain S, Nema RK (2009) The PEM fuel cell system with DC/DC boost converter: design, modeling and simulation. Int J Recent Trends Eng 1(3):157

    Google Scholar 

  • Kolli A, Gaillard A, De Bernardinis A, Bethoux O, Hissel D, Khatir Z (2015) A review on DC/DC converter architectures for power fuel cell applications. Energy Convers Manag 105:716–730

    Google Scholar 

  • Komathi C, Gopinath UM (2018) Analysis and design of genetic algorithm-based cascade control strategy for improving the dynamic performance of interleaved DC–DC SEPIC PFC converter. Neural Comput Appl 32:5033–5047

    Google Scholar 

  • Li Q, Chen W, Wang Y, Liu S, Jia J (2011) Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization. IEEE Trans Ind Electron 58(6):2410–2419

    Google Scholar 

  • Navarro-López EM, Cortés D, Castro C (2009) Design of practical sliding-mode controllers with constant switching frequency for power converters. Electr Power Syst Res 79(5):796–802

    Google Scholar 

  • Ogungbemi E, Ijaodola O, Khatib FN, Wilberforce T, El Hassan Z, Thompson J, Ramadan M, Olabi AG (2019) Fuel cell membranes—pros and cons. Energy. https://doi.org/10.1016/j.energy.2019.01.034

    Article  Google Scholar 

  • Oshaba AS, Ali ES, Elazim SA (2017) PI controller design via ABC algorithm for MPPT of PV system supplying DC motor–pump load. Electr Eng 99(2):505–518

    Google Scholar 

  • Ramakumar R, Chiradeja P (2004) Distributed generation and renewable energy systems. In: IECEC’02. 2002 37th intersociety energy conversion engineering conference, 2002. IEEE, pp 716–724

  • Reddy KJ, Natarajan S (2018) Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications—a review. Int J Hydrogen Energy 43(36):17387–17408

    Google Scholar 

  • Rezazi S, Hanini S, Si-Moussa C, Abdelmalek S (2016) Modeling and optimization of the operating conditions of Marrubium vulgare L. essential oil extraction process: Kinetic parameters estimation through genetic algorithms. J Essent Oil Bear Plants 19(4):843–853

    Google Scholar 

  • Romero A, Martínez-Salamero L, Valderrama H, Pallás O, Alarcón E (1998) General purpose sliding-mode controller for bidirectional switching converters. In: ISCAS’98. Proceedings of the 1998 IEEE international symposium on circuits and systems (Cat. No. 98CH36187), vol 6. IEEE, pp 466–469

  • Sedraoui M, Abdelmalek S, Gherbi S (2011) Multivariable generalized predictive control using an improved particle swarm optimization algorithm. Informatica 35(3):363–374

    MathSciNet  MATH  Google Scholar 

  • Somkun S, Sirisamphanwong C, Sukchai S (2015) A DSP-based interleaved boost DC–DC converter for fuel cell applications. Int J Hydrogen Energy 40(19):6391–6404

    Google Scholar 

  • Su JT, Liu DM, Liu CW, Hung CW (2009) An adaptive control method for two-phase DC/DC converter. In: 2009 international conference on power electronics and drive systems (PEDS). IEEE, pp 288–293

  • Subasi A, Kevric J, Canbaz MA (2017) Epileptic seizure detection using hybrid machine learning methods. Neural Comput Appl 31(1):317–325

    Google Scholar 

  • Tremblay O, Dessaint LA (2009) A generic fuel cell model for the simulation of fuel cell vehicles. In: 2009 IEEE vehicle power and propulsion conference. IEEE, pp 1722–1729

  • Wang CM, Lin CH, Hsu SY, Lu CM, Li JC (2014) Analysis, design and performance of a zero-current-switching pulse–width–modulation interleaved boost DC/DC converter. IET Power Electron 7(9):2437–2445

    Google Scholar 

  • Wang WY, Ding YH, Ke X, Ma X (2017) Sliding mode control of direct coupled interleaved boost converter for fuel cell. In: IOP conference series: earth and environmental science, vol 100, no 1. IOP Publishing, p 012170

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Abdelmalek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmalek, S., Dali, A., Bettayeb, M. et al. A new effective robust nonlinear controller based on PSO for interleaved DC–DC boost converters for fuel cell voltage regulation. Soft Comput 24, 17051–17064 (2020). https://doi.org/10.1007/s00500-020-04996-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-04996-4

Keywords

Navigation