Skip to main content
Log in

Boolean lifting property in quantales

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In ring theory, the lifting idempotent property (LIP) is related to some important classes of rings: clean rings, exchange rings, local and semilocal rings, Gelfand rings, maximal rings, etc. Inspired by LIP, lifting properties were also defined for other algebraic structures: MV-algebras, BL-algebras, residuated lattices, abelian l-groups, congruence distributive universal algebras, etc. In this paper, we define a lifting property (LP) in commutative coherent integral quantales, structures that are a good abstraction for lattices of ideals, filters and congruences. LP generalizes all the lifting properties existing in the literature. The main tool in the study of LP in a quantale A is the reticulation of A, a bounded distributive lattice whose prime spectrum is homeomorphic to the prime spectrum of A. The principal results of the paper include a characterization theorem for quantales with LP and a characterization theorem for hyperarchimedean quantales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balbes R, Dwinger P (1974) Distributive lattices. University of Missouri Press, Columbia

    MATH  Google Scholar 

  • Banaschewski B (2000) Gelfand and exchange rings: their spectra in pointfree topology. Arab J Sci Eng 25(2C):3–22

    MathSciNet  MATH  Google Scholar 

  • Birkhoff G (1967) Lattice theory, vol 25, 3rd edn. AMS Colloquium Publications, New York

    MATH  Google Scholar 

  • Cheptea D, Georgescu G, Muresan C (2015) Boolean lifting properties for bounded distributive lattices. Sci Ann Comput Sci 25:29–67

    MathSciNet  MATH  Google Scholar 

  • Cignoli R (1978) The lattice of global sections of sheaves of chains over Boolean spaces. Algebra Univers 8:357–373

    Article  MathSciNet  Google Scholar 

  • Cornish W (1972) Normal lattices. J Aust Math Soc 14:200–215

    Article  MathSciNet  Google Scholar 

  • Filipoiu A, Georgescu G, Lettieri A (1997) Maximal MV-algebras. Mathw Soft Comput 4:53–63

    MathSciNet  MATH  Google Scholar 

  • Georgescu G (1995) The reticulation of a quantale. Rev Roum Math Pures Appl 40:619–631

    MathSciNet  MATH  Google Scholar 

  • Georgescu G, Muresan C (2014) Boolean lifting property for residuated lattices. Soft Comput 18:2075–2089

    Article  Google Scholar 

  • Georgescu G, Muresan C (2017a) Congruence Boolean lifting property. J Mult Valued Log Soft Comput 29:225–274

    MathSciNet  MATH  Google Scholar 

  • Georgescu G, Muresan C (2017b) Factor congruence lifting property. Stud Log 225:179–2016

    Article  MathSciNet  Google Scholar 

  • Georgescu G, Voiculescu I (1987) Isomorphic sheaf representations of normal lattices. J Pure Appl Algebra 45:213–223

    Article  MathSciNet  Google Scholar 

  • Georgescu G, Voiculescu I (1989) Some abstract maximal ideal-like spaces. Algebra Univers 26:90–102

    Article  MathSciNet  Google Scholar 

  • Georgescu G, Leustean L, Muresan C (2010) Maximal residuated lattices with lifting Boolean center. Algebra Univers 63:83–99

    Article  MathSciNet  Google Scholar 

  • Georgescu G, Cheptea D, Muresan C (2015) Algebraic and topological results on lifting properties in residuated lattices. Fuzzy Sets Syst 271:102–132

    Article  MathSciNet  Google Scholar 

  • Hager AW, Kimber CM, McGovern WW (2013) Clean unital l-groups. Math Slovaca 63:979–992

    Article  MathSciNet  Google Scholar 

  • Immormino NA (2012) Some notes on clean rings. Bowling Green State University, Bowling Green

    Google Scholar 

  • Jipsen P (2009) Generalization of Boolean products for lattice-ordered algebras. Ann Pure Appl Log 161:224–234

    Article  MathSciNet  Google Scholar 

  • Jipsen P, Tsinakis C (2000) A survey of residuated lattices. Ordered algebraic structure. Kluwer, Dordrecht, pp 19–56

    MATH  Google Scholar 

  • Johnstone PT (1982) Stone spaces. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Lam TY (2001) A first course in noncommutative rings. Graduate texts in mathematics, vol 131. Springer, Berlin

    Book  Google Scholar 

  • Leustean L (2010) Representations of many-valued algebras. Editura Universitara, Bucharest

    MATH  Google Scholar 

  • Lu D, Yu W (2006) On prime spectrum of commutative rings. Commun Algebra 34:2667–2672

    Article  MathSciNet  Google Scholar 

  • Martinez J (1985) Abstract ideal theory. Ordered algebraic structures. Lecture notes in pure and applied mathematics, vol 99. Marcel Dekker, New York

    Google Scholar 

  • Martinez J, Zenk ER (2007) Regularity in algebraic frames. J Pure Appl Algebra 211:566–580

    Article  MathSciNet  Google Scholar 

  • McGovern WW (2006) Neat rings. J Pure Appl Algebra 205:243–265

    Article  MathSciNet  Google Scholar 

  • Nicholson WK (1977) Lifting idempotents and exchange rings. Trans Am Math Soc 229:268–278

    Article  MathSciNet  Google Scholar 

  • Paseka J (1996) Regular and normal quantales. Arch Math (Brno) 22:203–210

    MathSciNet  MATH  Google Scholar 

  • Paseka J, Rosicky J (2000) Quantales, current research in operational quantum logic: algebras, categories and Languages. Fundamental theories of physics, vol 111. Kluwer, New York, pp 245–262

    Book  Google Scholar 

  • Pawar YS (1993) Characterization of normal lattices. Indian J Pure Appl Math 24(11):651–656

    MathSciNet  MATH  Google Scholar 

  • Rosenthal KI (1989) Quantales and their applications. Longman Scientific and Technical, New York

    MATH  Google Scholar 

  • Selvaraj G, Petchimuthu S (2011) On prime spectrum of 2-primal rings. Bull Inst Math Acad Sin 6(1):73–84

    MathSciNet  MATH  Google Scholar 

  • Simmons H (1980) Reticulated rings. J Algebra 66:169–192

    Article  MathSciNet  Google Scholar 

  • Simmons H (1989) Compact representation—the lattice theory of compact ringed spaces. J Algebra 126:493–531

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable remarks and comments in order to improve the actual form of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Cheptea.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheptea, D., Georgescu, G. Boolean lifting property in quantales. Soft Comput 24, 6169–6181 (2020). https://doi.org/10.1007/s00500-020-04752-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-04752-8

Keywords

Navigation