Skip to main content

Advertisement

Log in

A biased random key genetic algorithm for the protein–ligand docking problem

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Molecular docking is a valuable tool for drug discovery. Receptor and flexible Ligand docking is a very computationally expensive process due to a large number of degrees of freedom of the ligand and the roughness of the molecular binding search space. A molecular docking simulation starts with receptor and ligand unbound structures, and the algorithm tests hundreds of thousands of ligand conformations and orientations to find the best receptor–ligand binding affinity by assigning and optimizing an energy function. Although the advances in the conception of methods and computational strategies for searching the best protein–ligand binding affinity, the development of new strategies, the adaptation, and investigation of new approaches and the combination of existing and state-of-the-art computational methods and techniques to the molecular docking problem are needed. We developed a Biased Random Key Genetic Algorithm as a sampling strategy to search the protein–ligand conformational space. We use a different method to discretize the search space. The proposed method (namely, BRKGA-DOCK) has been tested on a selection of protein–ligand complexes and compared to existing tools AUTODOCK VINA, DOCKTHOR, and a multiobjective approach (jMETAL). Compared to other traditional docking software, the proposed method shows best average Root-Mean-Square Deviation. Structural results were also statistically analyzed. The proposed method proved to be efficient and a good alternative for the molecular docking problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. NSGA-II (Nondominated Sorting Genetic Algorithm II) is based on NSGA algorithm and carries three innovations, namely a fast nondominated sorting procedure, a fast crowded distance estimation procedure, and a simple crowded comparison operator (Deb et al. 2002) from jMETAL.

References

  • Abdi H (2007) Bonferroni and sidak corrections for multiple comparisons. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 103–107

    Google Scholar 

  • Atilgan E, Hu J (2010) Efficient protein-ligand docking using sustainable evolutionary algorithms. In: 2010 10th international conference on hybrid intelligent systems (HIS), pp 113–118

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1):289–300

    MathSciNet  MATH  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  Google Scholar 

  • Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. Comput Surv 35:268–308

    Article  Google Scholar 

  • Blum C, Puchinger J, Raidl Gunther R, Andrea R (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151

    Article  MATH  Google Scholar 

  • Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  • Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32(1):335–373

    Article  Google Scholar 

  • Chen H, Liu B, Huang H, Hwang S, Ho S (2007) Sodock: swarm optimization for highly flexible protein-ligand docking. J Comput Chem 28(2):612–623

    Article  Google Scholar 

  • Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141

    Article  Google Scholar 

  • de Magalhaes CS, Barbosa HJC, Dardenne LE (2004) A genetic algorithm for the ligand-protein docking problem. Genet Mol Biol 27:605–610

    Article  Google Scholar 

  • de Magalhães CS, Almeida DM, Barbosa HJC, Dardenne LE (2014) A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf Sci 289:206–224

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Devi RV, Sathya SS, Coumar MS (2015) Evolutionary algorithms for de novo drug design a survey. Appl Soft Comput 27:543–552

    Article  Google Scholar 

  • Durillo JJ, Nebro AJ (2011) jMETAL: a Java framework for multi-objective optimization. Adv Eng Softw 42:760–771

    Article  Google Scholar 

  • Elokely KM, Doerksen RJ (2013) Docking challenge: Protein sampling and molecular docking performance. J Chem Inf Model 53(8):1934–1945

    Article  Google Scholar 

  • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    Article  MATH  Google Scholar 

  • Fu Y, Wu X, Chen Z, Sun J, Zhao J, Xu W (2015) A new approach for flexible molecular docking based on swarm intelligence. Math Probl Eng 2015. https://doi.org/10.1155/2015/540186

  • Garcia-Godoy MJ, Lopez-Camacho E, Garcia-Nieto J, Nebro AJ, Aldana-Montes JF (2015) Solving molecular docking problems with multi-objective metaheuristics. Molecules 20(6):10154

    Article  Google Scholar 

  • Goncalves JF, Resende MGC (2011) Biased random-key genetic algorithms for combinatorial optimization. J Heuristics 5:487–525

    Article  Google Scholar 

  • Goulart N, Souza SR, Dias LGS, Noronha TF (2011) Biased random-key genetic algorithm for fiber installation in optical network optimization. In: 2011 IEEE CEC, pp 2267–2271

  • Heberlé G, de Azevedo W (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18(9):1339–1352

    Article  Google Scholar 

  • Hochberg Y (1988) A sharper bonferroni procedure for multiple tests of significance. Biometrika 75(4):800–802

    Article  MathSciNet  MATH  Google Scholar 

  • Hommel G (1988) A stagewise rejective multiple test procedure based on a modified bonferroni test. Biometrika 75(2):383–386

    Article  MATH  Google Scholar 

  • Huang S, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11(8):3016

    Article  Google Scholar 

  • Janson S, Merkle D, Middendorf M (2008) Molecular docking with multi-objective particle swarm optimization. Appl Soft Comput 8(1):666–675

    Article  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking1. J Mol Biol 267(3):727–748

    Article  Google Scholar 

  • Kang L, Wang X (2012) Multi-scale optimization model and algorithm for computer-aided molecular docking. In: 2012 eighth international conference on natural computation (ICNC), pp 1208–1211

  • Kitchen DB, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(2):935–949

    Article  Google Scholar 

  • Kozakov D, Clodfelter KH, Vajda S, Camacho CJ (2005) Optimal clustering for detecting near-native conformations in protein docking. Biophys J 89(2):867–875

    Article  Google Scholar 

  • Kukkonen S, Lampinen J (2005) GDE3: The third evolution step of generalized differential evolution. In: IEEE congress on evolutionary computation, pp 443–450

  • Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161(2):269–288

    Article  Google Scholar 

  • Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406

    Article  Google Scholar 

  • Lopez-Camacho E, Godoy MJG, Nebro AJ, Aldana-Montes JF (2013) jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework. Bioinformatics 30(3):437–438. https://doi.org/10.1093/bioinformatics/btt679

  • Lopez-Camacho E, Godoy MJG, Garcia-Nieto J, Nebro AJ, Aldana-Montes JF (2015) Solving molecular flexible docking problems with metaheuristics: a comparative study. Appl Soft Comput 28:379–393

    Article  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18(1):50–60

    Article  MathSciNet  MATH  Google Scholar 

  • Marchiori E, Moore JH, Rajapakse JC (2007) Evolutionary computation, machine learning and data mining in bioinformatics. In: Proceedings 5th European conference, EvoBIO 2007, Valencia, Spain, April 11–13, 2007, vol 4447

  • Meier MR, Pippel FB, Sippl W, Baldauf C (2010) Paradocks: a framework for molecular docking with population-based metaheuristics. J Chem Inf Model 50(5):879–889

    Article  Google Scholar 

  • Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157

    Article  Google Scholar 

  • Morris GM, Lindstrom W, Sanner MF, Belew RK, Huey R, Olson AJ, Goodsell SD (2009) Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  Google Scholar 

  • Morris GM, Goodsell DS, Pique ME, Lindstrom W, Huey R, Forli S, Hart WE, Halliday S, Belew R, Olson AJ (2011) Autodock 4.2 user guide: automated docking of flexible ligands to flexible receptors. The scripps research institute. http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide. Accessed Jan 2018

  • Mucherino A, Seref O (2009) Modeling and solving real life global optimization problems with meta-heuristic methods. Adv Mod Agric Syst 25:1

    Article  Google Scholar 

  • Nebro AJ, Durillo JJ, García-Nieto J, Coello CA, Luna F, Alba E (2009) Smpso: a new pso-based metaheuristic for multi-objective optimization. In: 2009 IEEE symposium on computational intelligence in multicriteria decision-making, pp 66–73

  • Noronha TF, Resende MG, Ribeiro CC (2011) Biased random-key genetic algorithm for routing and wavelength assignment. J Glob Optim 50(3):503–518

    Article  Google Scholar 

  • Peter N (1963) Distribution-free multiple comparisons. Princeton University, Princeton

    Google Scholar 

  • Prasetyo H, Amer Y, Fauza G, Lee SH (2015) Survey on applications of biased-random key genetic algorithms for solving optimization problems. In: Ind. Eng. and Eng. Manag. (IEEM), pp 863–870

  • Resende MGC (2012) Biased random-key genetic algorithms with applications in telecommunications. TOP 20(1):130–153

    Article  MathSciNet  MATH  Google Scholar 

  • Schneider G, Bhm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7(1):64–70

    Article  Google Scholar 

  • Schrödinger LLC (2015) The PyMOL molecular graphics system, version 1.8. Schrödinger LLC, New York

    Google Scholar 

  • Silva RMA, Resende MGC, Pardalos PM, Fac JL (2013) Biased random-key genetic algorithm for nonlinearly-constrained global optimization. In: 2013 IEEE CEC, pp 2201–2206

  • Sousa SF, Ribeiro AJM, Coimbra JTS, Neves RPP, Martins SA, Moorthy NSHN, Fernandes PA, Ramos MJ (2013) Protein-ligand docking in the new millennium a retrospective of 10 years in the field. Curr Med Chem 20(18):2296–2314

    Article  Google Scholar 

  • Sture H (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    MathSciNet  MATH  Google Scholar 

  • Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Thomsen R (2003) Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72(1):57–73

    Article  MathSciNet  Google Scholar 

  • Trott O, Olson AJ (2010) Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    Google Scholar 

  • Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46(12):2287–2303

    Article  Google Scholar 

  • Wilcoxon F (1992) Individual comparisons by ranking methods. Springer, New York, pp 196–202

    Google Scholar 

  • Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

    Google Scholar 

  • Yang X-S (2011) Review of meta-heuristics and generalised evolutionary walk algorithm. Int J Bio-Insp Comput 3(2):77–84

    Article  Google Scholar 

  • Yoav B, Daniel Y (2001) The control of the false discovery rate in multiple testing under dependency. Ann Statist 29(4):1165–1188

    Article  MathSciNet  MATH  Google Scholar 

  • Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit 26(5):215–239

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant Number 473692/2013-9 and 311022/2015-4); the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); the Alexander von Humboldt-Foundation; and the Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (grant PRONUPEQ). This Research was supported by Microsoft under a Microsoft Azure for Research Award. We thank Dr. Mathias Krause (KIT, Germany) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Dorn.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Human participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

The authors Pablo Felipe Leonhart and Eduardo Spieler contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonhart, P.F., Spieler, E., Ligabue-Braun, R. et al. A biased random key genetic algorithm for the protein–ligand docking problem. Soft Comput 23, 4155–4176 (2019). https://doi.org/10.1007/s00500-018-3065-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3065-5

Keywords

Navigation