Skip to main content
Log in

Constructive methods for intuitionistic fuzzy implication operators

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, two novel constructive methods for fuzzy implication operators are proposed. And they can be used to resolve the questions about how to construct intuitionistic fuzzy implication operators to inference sentence “If x is A, then y is B,” where A and B are intuitionistic fuzzy sets over X and Y, respectively. In the first method, cut sets and representation theorem of intuitionistic fuzzy sets are utilized through triple valued fuzzy implications as well as fuzzy relations to obtain seven intuitionistic fuzzy implication operators. In the second method, the Lebesgue measure of the fuzzy implications with value one and zero is used, and one intuitionistic fuzzy implication operator can be obtained. Finally, properties of those operators are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alcalde C, Burusco A, González RF (2005) A constructive method for the definition of interval-valued fuzzy implication operators. Fuzzy Sets Syst 153(2):211–227

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov K, Gargov G (1998) Elements of intuitionistic fuzzy logic. Part I. Fuzzy Sets Syst 95(1):39–52

    Article  MATH  Google Scholar 

  • Baczyński M, Jayaram B (2008) (S, N)- and R-implications: a state-of-the-art survey. Fuzzy Sets Syst 159(14):1836–1859

    Article  MathSciNet  MATH  Google Scholar 

  • Baczyński M, Jayaram B (2010) QL-implications: some properties and intersections. Fuzzy Sets Syst 161(2):158–188

    Article  MathSciNet  MATH  Google Scholar 

  • Baczyński M (2014) Distributivity of implication operations over t-representable t-norms in interval-valued fuzzy set theory: The case of nilpotent t-norms. Inf Sci 257(1):388–399

    Article  MathSciNet  MATH  Google Scholar 

  • Bedregal BC, Dimuro GP, Santiago RHN (2010) On interval fuzzy S-implications. Inf Sci 180(8):1373–1389

    Article  MathSciNet  MATH  Google Scholar 

  • Bedregal BC (2010) On interval fuzzy negations. Fuzzy Sets Syst 161(17):2290–2313

    Article  MathSciNet  MATH  Google Scholar 

  • Bustince H, Burillo P (1996) Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst 78(3):293–303

    Article  MathSciNet  MATH  Google Scholar 

  • Bustince H (2000) Construction of intuitionistic fuzzy relations with predetermined properties. Fuzzy Sets Syst 109(3):379–403

    Article  MathSciNet  MATH  Google Scholar 

  • Bustince H, Barrenechea E, Mohedano V (2004) Intuitionistic fuzzy implication operators-an expression and main properties. Int J Unc Fuzz Knowl Based Syst 12(3):387–406

    Article  MathSciNet  MATH  Google Scholar 

  • Carbonell M, Torrens J (2010) Continuous R-implications generated from representable aggregation functions. Fuzzy Sets Syst 161(17):2276–2289

    Article  MathSciNet  MATH  Google Scholar 

  • Cintula P, Metcalfe G (2010) Admissible rules in the implication-negation fragment of intuitionistic logic. Ann Pure Appl Logic 162(2):162–171

    Article  MathSciNet  MATH  Google Scholar 

  • Cornelis C, Deschrijver G, Kerre EE (2004) Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int J Approx Reason 35(1):55–95

    Article  MathSciNet  MATH  Google Scholar 

  • Deschrijver G, Kerre EE (2005) Implicators based on binary aggregation operators in interval-valued fuzzy set theory. Fuzzy Sets Syst 153(2):229–248

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (1991) Fuzzy sets in approximate reasoning, Part 1: Inference with possibility distributions. Fuzzy Sets Syst 40(1):143–202

    Article  MATH  Google Scholar 

  • Dubois D, Hüllermeier E, Prade H (2003) On the representation of fuzzy rules in terms of crisp rules. Inf Sci 151(5):301–326

    Article  MathSciNet  MATH  Google Scholar 

  • Fodor JC (1991) On fuzzy implication operators. Fuzzy Sets Syst 42(3):293–300

    Article  MathSciNet  MATH  Google Scholar 

  • Gorzałczany MB (1989) An interval-valued fuzzy inference method—some basic properties. Fuzzy Sets Syst 31(2):243–251

    Article  MathSciNet  Google Scholar 

  • Kóczy L, Hirota K (1993) Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases. Inf Sci 71(1–2):169–201

    Article  MathSciNet  MATH  Google Scholar 

  • Li DC, Li YM, Xie YJ (2011) Robustness of interval-valued fuzzy inference. Inf Sci 181(20):4754–4764

    Article  MathSciNet  MATH  Google Scholar 

  • Li DC, Li YM (2012) Algebraic structures of interval-valued fuzzy (S, N) (S, N)-implications. Int J Approx Reason 53(6):892–900

    Article  MathSciNet  MATH  Google Scholar 

  • Luo CZ, Wang PZ (1990) Representation of compositional relations in fuzzy reasoning. Fuzzy Sets Syst 36(1):77–81

    Article  MathSciNet  MATH  Google Scholar 

  • Mas M, Monserrat M, Torrens J, Trillas E (2007) A Survey on fuzzy implication functions. IEEE Trans Fuzzy Syst 15(6):1107–1121

    Article  Google Scholar 

  • Pei D (2012) Formalization of implication based fuzzy reasoning method. Int J Approx Reason 53(5):837–846

    Article  MathSciNet  MATH  Google Scholar 

  • Shi YY, Yuan XH (2015) A possibility-based method for ranking fuzzy numbers and applications to decision making. J Intell Fuzzy Syst 29:337–349

    Article  MathSciNet  MATH  Google Scholar 

  • Wang G (2000) Triple I method and interval valued fuzzy reasoning. Sci China Ser E 43(3):242–253

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Z, Xu ZS, Liu SS (2014) Direct clustering analysis based on intuitionistic fuzzy implication. Appl Soft Comput 23(5):1–8

    Google Scholar 

  • Wu WZ, Leung Y, Shao MW (2013) Generalized fuzzy rough approximation operators determined by fuzzy implicators. Int J Approx Reason 54(9):1388–1409

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Y, Kerre EE, Ruan D, Song Z (2001) Fuzzy reasoning based on the extension principle. Int J Intell Syst 16(4):469–495

    Article  MATH  Google Scholar 

  • Yao O (2012) On fuzzy implications determined by aggregation operators. Inf Sci 193(11):153–162

    MathSciNet  MATH  Google Scholar 

  • Yu XH, Xu ZS (2013) Prioritized intuitionistic fuzzy aggregation operators. Inf Fusion 14(1):108–116

    Article  Google Scholar 

  • Yuan XH, Li HX, Sun KB (2011) The cut sets, decomposition theorems and representation theorems on intuitionistic fuzzy sets and interval valued fuzzy sets. Sci China Inf Sci 54:91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3(1):28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng M, Shi Z, Liu Y (2014) Triple I method of approximate reasoning on Atanassov’s intuitionistic fuzzy sets. Int J Approx Reason 55(6):1369–1382

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou L, Wu WZ, Zhang WX (2009) On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators. Inf Sci 179(7):883–898

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 61473327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiying Shi.

Ethics declarations

Conflict of interest

Yiying Shi, Xuehai Yuan and Yuchun Zhang declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Appendix

Appendix

Property 1

\(I_{Li}((a, b),(c, d)) (i=1,...,4)\) satisfy the following:

  1. (1)

    \(I_{Li}((a, b),(c, d))\) satisfy (A1)–(A6), (P1)–(P4), (P12), (P14), \((i=1,,4)\);

  2. (2)

    If \(a + d>1\), then \(I_{Li}((a, b),(c, d))\) satisfy (P6), \((i=1,3)\);

  3. (3)

    \(I_{L2}((a, b),(c, d))\) satisfy (P7);

  4. (4)
    1. (a)

      If \(a=c\), then \(I_{L1}((a, b),(c, d))\) satisfies (P8);

    2. (b)

      \( I_{L2}((a, b),(c, d))\) satisfies (P8);

  5. (5)

    \(I_{Li}((a, b),(c, d))\) satisfy (P9), \((i=1,3)\);

  6. (6)

    \(I_{Li}((a, b),(c, d))\) satisfy (P10), \((i=3,4)\);

  7. (7)

    \(I_{Li}((a, b),(c, d))\) satisfy (P11), \((i=1,2,4)\);

  8. (8)

    \(I_{Li}((a, b),(c, d))\) satisfy (P15), \((i=2,4)\);

  9. (9)

    If \(a> (b \wedge 1/2)\), then \(I_{Li}((a, b),(c, d))\) satisfy (P16), \((i=1,3)\);

  10. (10)
    1. (a)

      \(I_{Li}((a, b),(c\), d)) satisfy (P17), (\(i=1, 2, 4\));

    2. (b)

      If \(a \le d, c\le b\), then \(I_{L3}((a, b),(c, d))\) satisfies (P17).

Proof

To (A1)–(A4): When \(i=1\), and by Eq. (1), it can be easily concluded that (A1)–(A4) are true. The proofs for other cases are similar.

To (A5): If \((a, b) \le (a', b')\), then \(a\le a'\), \(b \ge b'\). When \(i=1\), by Eq. (1), we have the following:

  1. (i)

    When \(a\le c, b<d\), we have \(I_{L1}((a, b)\), \((c, d))=(1-d, 0)\) and \(b'\le b<d\), we have

    $$\begin{aligned}&I_{L1} (({a}',{b}'),(c,d))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1-d,0)}&{} {{a}'\le c\;\;\hbox {and}\;{b}'<d} \\ {(c,0)}&{} {{a}'>c\;\;\hbox {and}\;{a}'+d\le 1} \\ {(c,d)}&{} {{a}'>c\;\;\hbox {and}\;{a}'+d>1} \\ \end{array} }} \right. \quad . \end{aligned}$$

    Therefore, \(I_{L1}((a', b'), (c, d))\le I_{L1}((a, b), (c, d))\);

  2. (ii)

    When \(a \le c\), \(b \ge d\), we have \(I_{L1}((a, b), (c, d))=(1,0)\), then \(\forall (a, b) \le (a',b')\), we have \(I_{L1}((a', b'), (c, d))\le I_{L1}((a, b)\), (cd));

  3. (iii)

    When \(a >c\) and \(a\le 1-d\), we can draw that \(I_{L1}((a, b), (c, d))=(c,0)\) and

    $$\begin{aligned}&I_{L1} (({a}',{b}'),(c,d))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(c,0)}&{} {{a}'>c\;\;\hbox {and}\;{a}'+d\le 1} \\ {(c,d)}&{} {{a}'>c\;\;\hbox {and}\;{a}'+d>1} \\ \end{array} }} \right. , \end{aligned}$$

    so \(I_{L1}((a', b')\), (\(c, d))\le I_{L1}((a, b)\), (cd)).

  4. (iv)

    When \(a > c\) and \(a> 1-d\), we have \(I _{L1}((a,b)\), \((c,d))=(c,d)\). If (\(a,b) \le (a', b')\), then \(a'> c\) and \(a'+d >1\), therefore we have

    $$\begin{aligned} I _{L1}((a',b'), (c,d))=I _{L1}((a,b), (c,d)). \end{aligned}$$

In summary, we have if \((a,b) \le (a', b')\), then \(I _{L1}((a',b'), (c,d))\le I _{L1}((a,b)\), (cd)).

The proofs for other cases are similar. \(\square \)

To (A6): If \((c,d) \le (c', d')\), then \(c\le c'\), \(d \ge d'\). When \(i=1\), by Eq. (1), we can draw that

(i) When \(a \le c\) and \(b < d\), we have \(I _{L1}((a,b), (c,d))=(1-d, 0)\) and \(a \le c'\), so

$$\begin{aligned} I_{L1} ((a,b),({c}',{d}'))=\left\{ {{\begin{array}{l@{\quad }l} {(1-{d}',0)}&{} {a\le {c}'\;\hbox {and}\;b<{d}'} \\ {(1,0)}&{} {a\le {c}'\;\hbox {and}\;b\ge {d}'}, \\ \end{array} }} \right. \end{aligned}$$

Therefore, \(I_{L1}((a,b)\), \((c', d'))\ge I_{L1}((a, b), (c, d))\);

(ii) When \(a \le c\) and \(b\ge d\), we have \(I_{L1}((a,b)\), \((c,d))=(1, 0)\).

\(\forall (c,d) \le (c', d')\), we have \(I_{L1}((a,b), (c',d')) = I_{L1}((a,b)\), \((c,d))=(1, 0)\);.

(iii) When \(a \le c\) and \(a+ d\le 1\), we have \(I_{L1}((a,b)\), \((c,d))=(c, 0)\), that is to say

$$\begin{aligned}&I_{L1} ((a,b),({c}',{d}'))=\left\{ {{\begin{array}{l@{\quad }l} {(1-{d}',0)}&{} {a\le {c}'\;\hbox {and}\;b<{d}';} \\ {(1,0)}&{} {a\le {c}'\;\;\hbox {and}\;b\ge {d}';} \\ {({c}',0)}&{} {a>{c}'\;\;\hbox {and}\;a+{d}'\le 1.} \\ \end{array} }} \right. \end{aligned}$$

Therefore, \(I_{L1}((a, b)\), \((c', d'))\ge I_{L1}((a, b)\), (cd));

(iv) When \(a > c\) and \(a +d >1\), we have \(I_{L1}((a, b)\), \((c, d))=(c, d)\) and

$$\begin{aligned} I_{L1} ((a,b),({c}',{d}'))=\left\{ {{\begin{array}{l@{\quad }l} {(1-{d}',0)}&{} {a\le {c}'\;\hbox {and}\;b<{d}';} \\ {(1,0)}&{} {a\le {c}'\;\hbox {and}\;b\ge {d}';} \\ {({c}',0)}&{} {a>{c}'\;\hbox {and}\;a+{d}'\le 1;} \\ {({c}',{d}')}&{} {a>{c}'\;\hbox {and}\;a+{d}'>1.} \\ \end{array} }} \right. \end{aligned}$$

Therefore, \(I_{L1}((a, b)\), \((c', d'))\ge (c, d)=I_{L1}((a, b), (c, d))\).

In summary, we have if \((c, d) \le (c', d')\), then \( I_{L1}((a, b), (c', d')) \ge I_{L1}((a, b), (c, d))\).

The proofs for other cases are similar.

To (P1): When \(i=1\), If \(a +b=1\), \(c +d=1\), we have

$$\begin{aligned} I_{L1} ((a,b),(c,d))=\left\{ {{\begin{array}{l@{\quad }l} {(1,0)}&{} {a\le c\;\;\hbox {and}\;b\ge d} \\ {(c,d)}&{} {a>c\;\;} \\ \end{array} }\;} \right. , \end{aligned}$$

so

$$\begin{aligned} \pi _{I_{L1} ((a,b),(c,d))} =0. \end{aligned}$$

The proofs for other cases are similar. \(\square \)

To (P2)–(P3): By Eqs. (1)–(4), it can be easily concluded that (P2)–(P3) are true.

To (P4): When i=1, by Eq. (1), we have

$$\begin{aligned} \pi _{I_{L1} ((a,b),(c,d))} =\left\{ {{\begin{array}{l@{\quad }l} d&{} {a\le c\;\hbox {and}\;b<d;} \\ 0&{} {a\le c\;\hbox {and}\;b\ge d;} \\ {1-c}&{} {a>c\;\hbox {and}\;a+d\le 1;} \\ {1-c-d}&{} {a>c\;\hbox {and}\;a+d>1,} \\ \end{array} }} \right. \end{aligned}$$

Therefore,

$$\begin{aligned} \pi _{I_{L1} ((a,b),(c,d))}\le & {} 1-c\le (1-a)\vee (1-b)\\&\vee \, (1-c)\vee (1-d) \end{aligned}$$

The proofs for other cases are similar.

To (P6): When \(i=1\), by Eq. (1), we have

$$\begin{aligned} \pi _{I_{L1} ((a,b),(c,d))} =\left\{ {{\begin{array}{l@{\quad }l} d&{} {a\le c\;\hbox {and}\;b<d} \\ 0&{} {a\le c\;\hbox {and}\;b\ge d} \\ {1-c}&{} {a>c\;\hbox {and}\;a+d\le 1} \\ {1-c-d}&{} {a>c\;\hbox {and}\;a+d>1} \\ \end{array} }} \right. \end{aligned}$$

If \(\pi _{(a,b)} =\pi _{(c,d)} \), that is to say \(a +b=c +d\). When \(a +d> 1\), we have

$$\begin{aligned} \pi _{I_{L1} ((a,b),(c,d))} =1-c-d=\pi _{(c,d)} . \end{aligned}$$

The proofs for other cases are similar.

To (P7): By Eq. (2), we have \(I_{L2}((1, 0), (c, d)) =(c, d)\).

To (P8): When \(i=2\), by Eq. (2), we have

  1. (i)

    If \(d>0\), then \(I_{L2}((c, d), (e, f)) =(1, 0)\) and we have

    $$\begin{aligned} I_{L2} ((a,b),I_{L2} ((c,d),(e,f)))=(1,0) \end{aligned}$$
  2. (ii)

    If \(d=0\) and \(c +f<1\), then \(I_{L2}((c, d)\), \((e, f)) =(1-f, 0)\), so we have

    $$\begin{aligned}&I_{L2} ((a,b),I_{L2} ((c,d),(e,f)))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1,0)}&{} {(b>0)\;\hbox {or}\;(b=0\;\hbox {and}\;a<1)} \\ {(1-f,0)}&{} {b=0\;\;\hbox {and}\;a=1} \\ \end{array} }} \right. \end{aligned}$$
  3. (iii)

    If \(d=0\) and \(c +f \ge 1\) and \(c<1\), then \(I_{L2}((c, d)\), \((e, f)) =(e, 0)\), so we have

    $$\begin{aligned}&I_{L2} ((a,b),I_{L2} ((c,d),(e,f)))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1,0)}&{} {(b>0)\;\hbox {or}\;(b=0\;\hbox {and}\;a<1)} \\ {(e,0)}&{} {b=0\;\;\hbox {and}\;a=1} \\ \end{array} }} \right. \end{aligned}$$
  4. (iv)

    If \(d=0\) and \(c=1\), then \(I_{L2}((c, d)\), \((e, f)) = (e, f)\), so we have

    $$\begin{aligned}&I_{L2} ((a,b),I_{L2} ((c,d),(e,f)))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1,0)}&{} {b>0;}\\ {(1-f,0)}&{} {b=0\;\;\hbox {and}\;a+f<1;}\\ {(e,0)}&{} {b=0\;\;\hbox {and}\;a+f\ge 1\;\hbox {and}\;a<1;} \\ {(e,f)}&{} {b=0\;\;\hbox {and}\;a=1.}\\ \end{array} }} \right. \end{aligned}$$

In summary, we can draw that

$$\begin{aligned}&I_{L2} ((a,b),I_{L2} ((c,d),(e,f)))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1,0)}&{} {\hbox {else};} \\ {(e,0)}&{} {\begin{array}{l} (d=0\;\hbox {and}\;c=1\;\hbox {and}\;b=0\;\hbox {and}\;1>a\ge 1-f) \\ \hbox {or}\;(b=0\;\hbox {and}\;a=1\;\hbox {and}\;d=0\;\hbox {and}\;1-f\le c<1); \\ \end{array}}\\ {(1-f,0)}&{} {\begin{array}{l} (d=0\;\hbox {and}\;c=1\;\hbox {and}\;b=0\;\hbox {and}\;a+f<1) \\ \hbox {or}\;(b=0\;\hbox {and}\;a=1\;\hbox {and}\;d=0\;\;\hbox {and}\;f+c<1); \\ \end{array}} \\ {(e,f)}&{} {b=0\;\hbox {and}\;a=1\;\hbox {and}\;d=0\;\hbox {and}\;c=1.}\\ \end{array} }} \right. \end{aligned}$$

Similarly,

$$\begin{aligned}&I_{L2} ((a,b),I_{L2} ((c,d),(e,f)))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1,0)}&{} {\hbox {else};} \\ {(e,0)}&{} {\begin{array}{l} (d=0\;\hbox {and}\;c=1\;\hbox {and}\;b=0\;\hbox {and}\;1>a\ge 1-f) \\ \hbox {or}\;(b=0\;\hbox {and}\;a=1\;\hbox {and}\;d=0\;\hbox {and}\;1-f\le c<1); \\ \end{array}} \\ {(1-f,0)}&{} {\begin{array}{l} (d=0\;\hbox {and}\;c=1\;\hbox {and}\;b=0\;\hbox {and}\;a+f<1) \\ \hbox {or}\;(b=0\;\hbox {and}\;a=1\;\hbox {and}\;d=0\;\;\hbox {and}\;f+c<1); \\ \end{array}} \\ {(e,f)}&{} {b=0\;\hbox {and}\;a=1\;\hbox {and}\;d=0\;\hbox {and}\;c=1.} \\ \end{array} }} \right. \end{aligned}$$

That is to say

$$\begin{aligned}&I_{L2} ((a,b),I_{L2} ((c,d),(e,f)))\\&\quad =I_{L2} ((c,d),I_{L2} ((a,b),\\&\qquad (e,f)))\,\forall (a,b),(c,d),(e,f)\in L. \end{aligned}$$

The proofs for other cases are similar.

To (P9): When \(i=1\), by Eq. (1), we have

$$\begin{aligned}&I_{L1} ((a,b),(c,d))\\&\quad =(1,0)\Leftrightarrow a\le c,b\ge d\Leftrightarrow (a,b)\le (c,d). \end{aligned}$$

The proofs for other cases are similar.

To (P10): When \(i=3\), by Eq. (3), we have

$$\begin{aligned} I_{L3} ((a,b),(0,1))=\left\{ {{\begin{array}{l@{\quad }l} {(1,0)}&{} {b=1,a=0} \\ {(b,a)}&{} {b<1,a>0} \\ \end{array} }} \right. , \end{aligned}$$

so \(I_{L3}((a, b)\), \((0, 1)) =(b, a)\).

The proofs for other cases are similar.

To (P11): When \(i=1\), by Eq. (1), we have \((c, d) \le (c, 0) \le (1-d, 0)\le (1, 0)\). So

$$\begin{aligned} I_{L1}((a, b), (c, d))\ge (c, d). \end{aligned}$$

The proofs for other cases are similar.

To (P12): When \(i=1\), by Eq. (1), we have \(I_{L1}((a, b)\), \((a, b))=(1, 0)\).

The proofs for other cases are similar.

To (P14): It can be easily concluded.

To (P15): When \(i=2\), by Eq. (2), we have \(I_{L2}((1, 0), (1, 0))=(0, 1)\).

The proofs for other cases are similar.

To (P16): When \(i=1\), by Eq. (1), we have

$$\begin{aligned} I_{L1} ((a,b),(b,a))=\left\{ {{\begin{array}{l@{\quad }l} {(1,0)}&{} {b\ge a;} \\ {(b,0)}&{} {b<a,a\le 0.5;} \\ {(b,a)}&{} {b<a,a>0.5,} \\ \end{array} }} \right. \end{aligned}$$

So if \(a> (b\wedge 1/2)\), then \(I_{L1}((a, b)\), \((b, a))=(b, a)\).

The proofs for other cases are similar.

To (P17): (a) When \(i=1\), by (P13), (P14), (P5), we have \(I_{L1}((c, d)\), \((a, b))\ge (a, b)\), and

$$\begin{aligned}&I_{L1} ((a,b),I_{L1} ((c,d),(a,b)))\\&\quad \ge I_{L1} ((a,b),(a,b))=(1,0) \end{aligned}$$

The proofs for other cases are similar.

(b) By Eq. (3), we have

$$\begin{aligned} I_{L3} ((c,d),(a,b))=\left\{ {{\begin{array}{l@{\quad }l} {(d,0)}&{} {d<b\;\hbox {and}\;c+b\le 1}\\ {(1,0)}&{} {d\ge b\;\hbox {and}\;c\le a} \\ {(d,c)}&{} {d<b\;\hbox {and}\;c+b>1}\\ {(1-c,0)}&{} {d\ge b\;\hbox {and}\;c>a}\\ \end{array} }} \right. \end{aligned}$$
  1. (i)

    If \(d< b\) and \(c +b\le 1\) and \(a \le d\), then \(I_{L3}((a, b)\), \(I_{L3}((c, d)\), \((a, b)))= (1, 0)\);

  2. (ii)

    If \(b \le d\) and \(c \le a\), then \(I_{L3}((a, b)\), \(I_{L3}((c, d), (a, b)))= (1, 0)\);

  3. (iii)

    If \(d< b\) and \(c +b>1\) and \(a \le d\), \(c \le b\), then \(I_{L3}((a, b)\), \(I_{L3}((c, d)\), \((a, b)))= (1, 0)\);

  4. (iv)

    If \(b \le d\) and \(c > a\), then \(I_{L3}((a, b)\), \(I_{L3}((c, d)\), \((a, b)))= (1, 0)\);.

In summary, we can draw that if \(a\le d\) and \(c\le b\), then

$$\begin{aligned} I_{L3}((a, b), I_{L3}((c, d), (a, b)))= (1, 0). \end{aligned}$$

Property 2

\(I_{Li}((a,b)\),\((c, d)) (i=5, 6, 7)\) satisfy the following:

  1. (1)

    \(I_{Li}((a, b)\),(cd)) satisfy (A1)–(A4), (P1), (P4)–(P7), (P10), (P15), (P16), (\(i=5,6,7)\);

  2. (2)

    \(I_{Li}((a, b),(c, d))\) satisfy (A6), (P2), \((i=5,7\));

  3. (3)

    \(I_{Li}((a, b)\), (cd)) satisfy (A5), (P3), (P11), \((i=6,7)\);

  4. (4)
    1. (a)

      If \(a \vee b=c \vee d\) and \(a \wedge b=c \wedge d\), then \(I_{Li}((a, b)\), (cd)) satisfy (P8), (P13), \((i=5,6)\);

    2. (b)

      \(I_{L7}((a,b)\), (cd)) satisfies (P8), (P13);

  5. (5)

    \(I_{L7}((a, b)\), (cd)) satisfies (P14).

Proof

To (A1)–(A4): When \(i=5\), by Eq. (5), it can be easily concluded that (A1)–(A4) are true. The proofs for other cases are similar.

To (A5): If \((a,b) \le (a', b')\), then \(a\le a'\), \(b \ge b'\), so \(b\vee c \ge b \vee c'\), \(a\wedge d \le a' \wedge d\) .

When \(i=7\) and by Eq. (7), we have

$$\begin{aligned} I_{L7}((a', b'), (c, d))\le I_{L7}((a, b), (c, d)). \end{aligned}$$

The proof for \(i=6\) is similar. \(\square \)

To (A6): When \(i=7\) and by Eq. (7), we have if \((c, d)\le (c', d')\), then \(c\le c'\), \(d \ge d'\), so \(b \vee c \le b \vee c'\), \(a\wedge d \ge a \wedge d'\), that is to say

$$\begin{aligned} I_{L7}((a, b), (c, d))\le I_{L7}((a, b), (c', d')). \end{aligned}$$

The proof for \(i=5\) is similar.

To (P1): When \(i=5\) and if \(a +b=1\), \(c +d=1\), we can draw that

$$\begin{aligned} I_{L5}((a, b),(c, d))= (b\vee (a \wedge c), a\vee (b \wedge d)). \end{aligned}$$

So \(1-[b\vee (a \wedge c)] = a\wedge (b \vee d)\), that is to say

$$\begin{aligned} \pi _{I_{L5} ((a,b),(c,d))} =0. \end{aligned}$$

The proofs for other cases are similar.

To (P2)–(P3): By Eqs. (5)–(7), it can be easily concluded that (P2)–(P3) are true.

To (P4): It can be concluded by Eqs. (5)–(7).

To (P5): When \(i=5\), by Eq. (5), we have \(I_{L5}((a, b)\), \((a, b)) = (b \wedge a, a \wedge b)\), therefore

$$\begin{aligned} \pi _{I_{L5} ((a,b),(c,d))} =\pi _{(a,b)} \end{aligned}$$

The proofs for other cases are similar.

To (P6): If \(\pi _{(a, b)} = \pi _{(c, d)}\), then \(a +b=c +d\), when \(i=7\) and by Eq. (7), we have

(i) When \(a \ge d\), we have \(b \le c\), then \(I_{L7}((a, b), (c, d)) = (b \vee c, a \wedge d)= (c, d)\), therefore

$$\begin{aligned} \pi _{I_{L7} ((a,b),(c,d))} =\pi _{(a,b)} . \end{aligned}$$

(ii) When \(a \le d\), we have \(b\ge c\), then \(I_{L7}((a, b)\), \((c, d)) = (b \vee c, a \wedge d)= (b, a)\) and

$$\begin{aligned} \pi _{I_{L7} ((a,b),(c,d))} =\pi _{(a,b)} . \end{aligned}$$

In summary, we have if \(\pi _{(a, b)} = \pi _{(c, d)}\), then \(\pi _{I_{L7} ((a,b),(c,d))}=\pi _{(a,b)} \).

The proofs for other cases are similar.

To (P7): When \(i=5\) and by Eq. (5), we have \(I_{L5}((1, 0), (c, d)) = (c, d)\)

The proofs for other cases are similar.

To (P8): When \(i=5\) and by Eq. (5), we have

$$\begin{aligned}&I_{L5} ((c,d),(e,f))=(d\vee (c\wedge e),c\wedge (d\vee f))\\&I_{L5} ((a,b),I_{L5} ((c,d),(e,f)))\\&\quad =(b\vee (a\wedge [d\vee (c\wedge e)]),a\wedge (b\vee [c\wedge (d\vee f)])) \\&\quad =(b\vee (a\wedge d)\vee (a\wedge c\wedge e),a\wedge (b\vee c)\wedge (b\vee d\vee f)) \\&\quad =([b\vee (a\wedge d)]\vee (a\wedge c\wedge e),[a\wedge (b\vee c)]\wedge (b\vee d\vee f)) \\&\quad =([(b\vee a)\wedge (b\vee d)]\vee (a\wedge c\wedge e),\\&\qquad [(a\wedge b)\vee (a\wedge c)]\wedge (b\vee d\vee f)). \end{aligned}$$

On the other hand, we have

$$\begin{aligned}&I_{L5} ((a,b),(e,f))=(b\vee (a\wedge e),a\wedge (b\vee f))\\&I_{L5} ((c,d),I_{L5} ((a,b),(e,f)))\nonumber \\&\quad =(d\vee (c\wedge [b\vee (a\wedge e)]), c\wedge (d\vee [a\wedge (b\vee f)])) \\&\quad =(d\vee (c\wedge b)\vee (c\wedge a\wedge e),c\wedge (d\vee a)\wedge (d\vee b\vee f)) \\&\quad =([d\vee (c\wedge b)]\vee (c\wedge a\wedge e),[c\wedge (d\vee a)]\wedge (d\vee b\vee f)) \\&\quad =([(d\vee c)\wedge (d\vee b)]\vee (c\wedge a\wedge e),[(c\wedge d)\vee (c\wedge a)]\\&\qquad \wedge (d\vee b\vee f)) \end{aligned}$$

In summary, we have if \(a \wedge b= c \wedge d\) and \(a \wedge b= c \wedge d\), then

$$\begin{aligned}&I_{L5} ((a,b),I_{L5} ((c,d),(e,f)))\\&\quad =I_{L5} ((c,d),I_{L5} ((a,b),(e,f))) \end{aligned}$$

The proofs for other cases are similar.

To (P10): When \(i=5\) and by Eq. (5), we have \(I_{L5}((a, b), (0, 1)) = (b, a)\).

The proofs for other cases are similar.

To (P11): When \(i=6\) and by Eq. (6), we have \(I_{L6}((a, b),(c, d))= (c\vee (b \wedge d)\), \(d\wedge (a \vee c))\).

For the reason that \(c\vee (b \wedge d) \ge c\), \(d \wedge (a \vee c) \le d\), we can draw that

$$\begin{aligned} I_{L6}((a, b),(c, d))\ge (c, d). \end{aligned}$$

The proofs for other cases are similar.

To (P13): When i=5 and by Eq. (5), we have if \(a \vee b= c \vee d\) and \(a \wedge b= c \wedge d\), then

$$\begin{aligned}&I_{L5} ((d,c),(b,a))\\&\quad =(c\vee (d\wedge b),d\wedge (c\vee a))\\&\quad =((c\vee d)\wedge (c\vee b)),(d\wedge c)\vee (d\wedge a))) \\&\quad =((a\vee b)\wedge (c\vee b)),(b\wedge a)\vee (d\wedge a))) \\&\quad =(b\vee (a\wedge c),a\wedge (b\vee d)) \\&\quad =I_{L5} ((a,b),(c,d)). \end{aligned}$$

The proofs for other cases are similar.

To (P15): When \(i=5\) and by Eq. (5), we have

$$\begin{aligned} I_{L5} ((a,b),(c,d))&=(b\vee (a\wedge c),a\wedge (b\vee d))=(0,1) \\&\Leftrightarrow b\vee (a\wedge c)=0,a\wedge (b\vee d)=1 \\&\Leftrightarrow b=\;a\wedge c=0\;and\;a=\;b\vee d=1 \\&\Leftrightarrow (a,b)=(1,0),(c,d)=(0,1) \end{aligned}$$

The proofs for other cases are similar.

To (P16): When \(i=5\) and by Eq. (5), we have

$$\begin{aligned} I_{L5}((a, b), (b, a)) = (b \vee (a \wedge b), a \wedge (b \vee a))= (b, a). \end{aligned}$$

The proofs for other cases are similar.

Property 3

\(I_{L8}((a, b), (c, d))\) satisfies the following:

  1. (1)

    (A1)–(A6), (P1)–(P4), P(7), (P9)–(P15) and (P17) hold;

  2. (2)

    If \(a \vee c \le e\), then (P8) holds.

Proof

By Eq. (8), it can be easily concluded that (A1)–(A4) are true.

To (A5): If \((a, b)\le (a', b')\), then \(a \le a'\), \(b \ge b'\). By Eq. (8), we can draw that

$$\begin{aligned}&I_{L8} ((a,b),(c,d))\nonumber \\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(c+b,d+a-1)}&{}\; {a+d>1} \\ {(1-\max (a-c,0)-\max (d-b,0),0)}&{}\; {a+d\le 1} \\ \end{array} }} \right. . \end{aligned}$$
  1. (i)

    When \(a +d > 1\), we have \(I_{L8}((a, b)\), \((c, d))= (b +c, d +a -1)\) and

    $$\begin{aligned} I_{L8} (({a}',{b}'),(c,d))=(c+{b}',d+{a}'-1). \end{aligned}$$

    For the reason that \(c + b \ge c + b', d+a -1\le d+ a'-1\), therefore

    $$\begin{aligned} I_{L8} ((a,b),(c,d))\ge I_{L8} (({a}',{b}'),(c,d)). \end{aligned}$$
  2. (ii)

    When \(a +d\le 1\), we have \(I_{L8}((a, b)\), \((c, d))= (1- \max (a - c, 0) - \max (d - b, 0), 0)\).

    1. (a)

      If \(a \le c\), \(b \ge d\), then \(I_{L8}((a, b)\), \((c, d))= (1, 0)\). Therefore,

      $$\begin{aligned}&\forall (a,b)\le ({a}',{b}'),I_{L8} ((a,b),(c,d))\\&\quad \ge I_{L8} (({a}',{b}'),(c,d)). \end{aligned}$$
    2. (b)

      If \(a \le c\), \(b < d\), then \(I_{L8}((a, b)\), \((c, d))= (1- d+b, 0)\), because \(b'<b\), we have

      $$\begin{aligned}&I_{L8} (({a}',{b}'),(c,d))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1-d+{b}'-\max ({a}' -c,0),0)}&{}\; {{a}'+d\le 1;} \\ {(c+{b}',d+{a}'-1)}&{}\; {{a}'+d>1,} \\ \end{array} }} \right. \end{aligned}$$

      and \((1- \max (a - c, 0) -d +b', 0)\le (1 - d +b, 0)\) as well as

      $$\begin{aligned} (c +b', d +a'-1)\le (1- d +b, 0). \end{aligned}$$

      That is to say

      $$\begin{aligned} I_{L8} ((a,b),(c,d))\ge I_{L8} (({a}',{b}'),(c,d)); \end{aligned}$$
    3. (c)

      If \(a > c\), \(b \ge d\), then \(I_{L8}((a, b)\), \((c, d))= (1- a+c, 0)\), and

      $$\begin{aligned}&I_{L8} (({a}',{b}'),(c,d))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1-{a}'+c-\max (d-{b}',0),0)}&{}\; {{a}'+d\le 1;} \\ {(c+{b}',d+{a}'-1)}&{}\; {{a}'+d>1.} \\ \end{array} }} \right. \end{aligned}$$

      For \(a \le a\)’, we have

      $$\begin{aligned}&(1- \max (d - b', 0) -a' +c, 0) \le (1 - a +c, 0)\hbox { and }\\&(c +b', d +a'-1)\le (1 - a +c, 0). \end{aligned}$$

      That is to say

      $$\begin{aligned} I_{L8} ((a,b),(c,d))\ge I_{L8} (({a}',{b}'),(c,d)). \end{aligned}$$
    4. (d)

      If \(a > c\), \(b < d\), then \(I_{L8}((a, b)\), \((c, d))= (1- a+c- d +b, 0)\). And

      $$\begin{aligned}&I_{L8} (({a}',{b}'),(c,d))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(1-{a}'+c-d+{b}',0)}&{} {{a}'+d\le 1;} \\ {(c+{b}',d+{a}'-1)}&{} {{a}'+d>1.} \\ \end{array} }} \right. \end{aligned}$$

For the reason that \(a \le a'\), we have \((1-d +b'-a' +c, 0) \le (1- d +b-a +c, 0)\), and for \(b' \le b\), we have \((c +b', d +a'-1)\le (1 - a + c -d + b, 0)\). That is to say

$$\begin{aligned} I_{L8} ((a,b),(c,d))\ge I_{L8} (({a}',{b}'),(c,d)). \end{aligned}$$

In summary, we have if \((a, b)\le (a', b')\), then \(I_{L8}((a, b)\), \((c, d))\ge I_{L8}((a', b')\), (cd)). \(\square \)

To (A6): If \((c, d)\le (c', d')\), then \(c \le c'\), \(d \ge d'\). By Eq. (8), we have

$$\begin{aligned}&I_{L8} ((a,b),(c,d))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(c+b,d+a-1)}&{}\; {a+d>1} \\ {(1-\max (a-c,0)-\max (d-b,0),0)}&{}\; {a+d\le 1} \\ \end{array} }} \right. \end{aligned}$$
  1. (i)

    When \(a +d \le \) 1, we have

    $$\begin{aligned}&I_{L8} ((a,b),(c,d))\\&\quad =(1-\max (a-c,0)-\max (d-b,0),0). \end{aligned}$$

    If \(d \ge \quad d'\), then \(a+d' \le a+d \le 1\), therefore

    $$\begin{aligned}&(1-\max (a-{c}',0)-\max ({d}'-b,0),0)\\&\quad \ge (1-\max (a-c,0)-\max (d-b,0),0), \end{aligned}$$

    and we have

    $$\begin{aligned} I_{L8}((a, b), (c, d))\le I_{L8}((a, b), (c', d')). \end{aligned}$$
  2. (ii)

    When \(a +d > 1\), we have \(I_{L8}((a, b)\), \((c, d))= (b+c, a+d-1)\).

    1. (a)

      If \(a +d' > 1\), then \(I_{L8}((a, b)\), \((c', d'))= (b+c', a+d'-1) \ge (b+c, a+d-1)\);

    2. (b)

      If \(a +d' \le \) 1, then \(I_{L8}((a, b), (c', d'))= (1- \max (a -c', 0)- \max (d'- b, 0), 0)\);

When \(a \le c', b \ge d'\), we have \(I_{L8}((a, b)\), \((c', d'))= (1, 0)\). Therefore,

$$\begin{aligned} \forall (c,d)\le ({c}',{d}'),I_{L8} ((a,b),(c,d))\le I_{L8} ((a,b),({c}',{d}')); \end{aligned}$$

When \(a \le c'\), \(b < d'\), we have \(I_{L8}((a, b), (c', d'))= ( - d'+b, 0)\) and

$$\begin{aligned} (1 - d'+b, 0)\ge & {} (b+c', 0)\ge (b+c, 0) \\\ge & {} (b+c, a+d -1). \end{aligned}$$

Therefore,

$$\begin{aligned} I_{L8} ((a,b),(c,d))\le I_{L8} ((a,b),({c}',{d}')). \end{aligned}$$

When \(a > c'\), \(b \ge d'\), we have \(I_{L8}((a, b)\), \((c', d'))= (1 - a+c', 0)\) and

$$\begin{aligned} (1 - a+c', 0)\ge & {} (b+c', 0) \ge (b+c, 0) \\\ge & {} (b+c, a+d -1). \end{aligned}$$

Therefore,

$$\begin{aligned} I_{L8} ((a,b),(c,d))\le I_{L8} ((a,b),({c}',{d}')); \end{aligned}$$

When \(a > c'\), \(b < d'\), we have \(I_{L8}((a, b), (c', d'))= (1 - a+c'+b- d' 0)\).

For \(a + d' \le \) 1, we have

$$\begin{aligned} (1 - a+c'+b - d', 0)\ge & {} (b+c', 0) \ge (b+c, 0) \\\ge & {} (b+c, a+d -1); \end{aligned}$$

Therefore,

$$\begin{aligned} I_{L8} ((a,b),(c,d))\le I_{L8} ((a,b),({c}',{d}')). \end{aligned}$$

In summary, we have if (\(c, d) \le (c', d')\), then \( I_{L8}((a, b)\), \((c', d')) \ge I_{L8}((a, b)\), (cd)).

To (P1): When \(a +b\)=1, \(c +d\)=1, we can draw that

  1. (i)

    If \(a \le c\), then \(a \le 1-d\) and \(b \ge d\), therefore \(I_{L8}((a, b)\), \((c, d))= (1, 0)\). That is to say

    $$\begin{aligned} \pi _{I_{L8} ((a,b),(c,d))} =0; \end{aligned}$$
  2. (ii)

    If \(a > c\), then \(I_{L8}((a, b)\), \((c, d))= (1-a+c, a-c)\). That is to say

    $$\begin{aligned} \pi _{I_{L8} ((a,b),(c,d))} =0; \end{aligned}$$

    In summary, we have (P1) holds.

To (P2)–(P3): By Eq. (8), it can be easily concluded that (P2)–(P3) are true.

To (P4): By Eq. (8), we have

$$\begin{aligned}&\pi _{I_{L8} ((a,b),(c,d))}\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {2-c-b-d-a}&{} {a+d\ge 1;} \\ {\max (a-c,0)+\max (d-b,0)}&{} {a+d<1.} \\ \end{array} }} \right. \end{aligned}$$

If \(a + d \ge \) 1, then

$$\begin{aligned} \pi _{I_{L8} ((a,b),(c,d))} =2-a-b-c-d\le 1-c-b\le 1-c. \end{aligned}$$

If \(a + d < 1\), then

$$\begin{aligned} \pi _{I_{L8} ((a,b),(c,d))}= & {} \max (a-c,0)+\max (d-b,0)\\\le & {} a-c+d-b\le 1-c-b\le 1-c. \end{aligned}$$

In summary, we have

$$\begin{aligned} \pi _{I_{L8} ((a,b),(c,d))} \le (1-a)\vee (1-b)\vee (1-c)\vee (1-d). \end{aligned}$$

To (P7): By Eq. (8), we have \(I_{L8}((1, 0), (c, d))= (c, d)\).

To (P8): Suppose that \(a \le e\), we have \(a+f \le 1\) and

$$\begin{aligned} I_{L8} ((a,b),(e,f))=(1-\max (f-b,0),0). \end{aligned}$$

(i) When \(b \ge f\), we have \(I_{L8}((a, b), (e, f))= (1, 0)\), therefore

$$\begin{aligned} I_{L8} ((c,d)),I_{L8} ((a,b),(e,f)))= & {} I_{L8} ((c,d)),(1,0))\\= & {} (1,0) \end{aligned}$$

On the other hand, by (P10), we have \(I_{L8}((c, d)\), (ef)) \(\ge (e, f)\), so

$$\begin{aligned} I_{L8} ((a,b),I_{L8} ((c,d),(e,f)))\ge & {} I_{L8} ((a,b),(e,f))\\= & {} (1,0). \end{aligned}$$

Therefore, we have \(I_{L8}\)((ab),\( I_{L8}\)((cd), (ef)))= (1, 0).

That is to say

$$\begin{aligned}&I_{L8} ((a,b),I_{L8} ((c,d),(e,f)))\\&\quad =I_{L8} ((c,d)),I_{L8} ((a,b),(e,f))). \end{aligned}$$

(ii) When \(b \le f\), we have \(I_{L8}((a, b)\), \((e, f))= (1 - f+b, 0)\), therefore

$$\begin{aligned}&I_{L8} ((c,d),I_{L8} ((a,b),(e,f)))\\&\quad =(1-\max (c-1+f-b,0),0) \end{aligned}$$

(a) If \(c > 1-f + b\), then \(I_{L8}((c, d)\), \( I_{L8}((a, b)\), \((e, f)))= (2- c -f + b, 0)\). On the other hand, for the reason that \(c > 1-f + b\), we have

$$\begin{aligned} I_{L8}((c, d), (e, f))= (d+e, c+f - 1). \end{aligned}$$

And we can draw that \(I_{L8}((a, b), I_{L8}((c, d), (e, f)))= (2 - c-f + b, 0)\).

In summary, we have

$$\begin{aligned}&I_{L8} ((a,b),I_{L8} ((c,d),(e,f)))\\&\quad =I_{L8} ((c,d),I_{L8} ((a,b),(e,f))). \end{aligned}$$

(b) If \(c < 1-f + b\), then \(I_{L8}((c, d)\), \(I_{L8}((a, b)\), \((e, f)))= (1, 0)\).

On the other hand,

$$\begin{aligned}&I_{L8} ((c,d),(e,f))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(e+d,f+c-1)}&{} {f+c>1} \\ {(1-\max (c-e,0)-\max (f-d,0),0)}&{} {c+f\le 1} \\ \end{array} }} \right. . \end{aligned}$$

For the reason that \(I_{L8}((c, d), (e, f)))\ge (e, f)\), we have

$$\begin{aligned} 1- \max (c-e, 0)-\max (f -d, 0)\ge e \ge a; \end{aligned}$$

so we can conclude that \(I_{L8}((c, d), (e, f)))\ge (a, b)\). That is to say

$$\begin{aligned}&I_{L8} ((a,b),I_{L8} ((c,d),(e,f)))\\&\quad \ge I_{L8} ((a,b),(a,b))=(1,0). \end{aligned}$$

Therefore,

$$\begin{aligned}&I_{L8} ((a,b),I_{L8} ((c,d),(e,f)))\\&\quad =I_{L8} ((c,d),I_{L8}((a,b),(e,f)))=(1,0). \end{aligned}$$

In summary, we have if \(a \le e\), then

$$\begin{aligned}&I_{L8} ((a,b),I_{L8} ((c,d),(e,f)))\\&\quad =I_{L8} ((c,d),I_{L8} ((a,b),(e,f))). \end{aligned}$$

To (P9):

$$\begin{aligned} (a,b)\le & {} (c,d)\Leftrightarrow a\le c,b\ge d\Leftrightarrow a\le c\le 1-d,b\\\ge & {} d\Leftrightarrow I_{L8} ((a,b),(c,d))=(1,0). \end{aligned}$$

To (P10): By Eq. (8), \(I_{L8}((a, b), (0, 1))= (b, a)\).

To (P11): By Eq. (8), we can draw that

$$\begin{aligned}&I_{L8} ((a,b),(c,d))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(b+c,a+d-1)}&{} {d+a>1} \\ {(1-\max (d-b,0)-\max (a-c,0),0)}&{} {d+a\le 1} \\ \end{array} }} \right. \end{aligned}$$
  1. (i)

    When \(a+d > 1\), we have \(I_{L8}((a, b), (c, d)) = (c + b, d + a - 1) \ge (c, d)\);

  2. (ii)

    When \(a+d \le 1\), we have \(I_{L8}((a, b)\), \((c, d)) = (1-\max (a- c, 0) - \max (d- b, 0), 0)\);

    1. (a)

      If \(a \le c, b \ge d\), then \(I_{L8}((a, b), (c, d)) = (1, 0)\ge (c, d)\);

    2. (b)

      If \(a \le c, b < d\), then \(I_{L8}((a, b), (c, d))= (1-d + b, 0)\ge (c, d)\);

    3. (c)

      If \(a > c, b \ge d\), then \(I_{L8}((a, b)\), \((c, d)) = (1-a + c, 0) \ge (c, d)\);

    4. (d)

      If \(a> c, b < d\), then \(I_{L8}((a, b), (c, d)) = (1- a + c -d + b, 0)\);

For the reason that \(a+d \le 1\), then we have \(1- a + c -d + b \ge c + b \ge c\) and \(d \ge 0\). So we can draw that

$$\begin{aligned} I_{L8} ((a,b),(c,d))\ge (c,d). \end{aligned}$$

In summary, we can draw that

$$\begin{aligned} I_{L8} ((a,b),(c,d))\ge (c,d). \end{aligned}$$

To (P12): By Eq. (8), we have \(I_{L8}((a, b), (a, b)) = (1, 0)\)

To (P13): By Eq. (8),

$$\begin{aligned}&I_{L8} ((d,c),(b,a))\\&\quad =\left\{ {{\begin{array}{l@{\quad }l} {(b+c,a+d-1)}&{} {d+a\ge 1} \\ {(1-\max (d-b,0)-\max (a-c,0),0)}&{} {d+a<1} \\ \end{array} }} \right. =I_{L8} ((a,b),(c,d)). \end{aligned}$$

To (P15): It can be drawn by Eq. (8).

To (P17): By (P13), we have \(I_{L8}((c, d)\), \((a, b)) \ge (a, b)\). And by (P11), (P2), we have

$$\begin{aligned}&I_{L8} ((a,b),I_{L8} ((c,d),(a,b)))\\&\quad \ge I_{L8} ((a,b),(a,b))=(1,0). \end{aligned}$$

That is to say

$$\begin{aligned} I_{L8} ((a,b),I_{L8} ((c,d),(a,b)))=(1,0). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yuan, X. & Zhang, Y. Constructive methods for intuitionistic fuzzy implication operators. Soft Comput 21, 5245–5264 (2017). https://doi.org/10.1007/s00500-016-2239-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2239-2

Keywords

Navigation