Skip to main content
Log in

Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The workflow scheduling with multiple objectives is a well-known NP-complete problem, and even more complex and challenging when the workflow is executed in cloud computing system. In this study, an endocrine-based coevolutionary multi-swarm for multi-objective optimization algorithm (ECMSMOO) is proposed to satisfy multiple scheduling conflicting objectives, such as the total execution time (makespan), cost, and energy consumption. To avoid the influence of elastic available resources, a manager server is adopted to collect the available resources for scheduling. In ECMSMOO, multi-swarms are adopted and each swarm employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective. To avoid falling into local optima which is common in traditional heuristic algorithms, an endocrine-inspired mechanism is embedded in the particles’ evolution process. Furthermore, a competition and cooperation technique among swarms is designed in the ECMSMOO. All these strategies effectively improve the performance of ECMSMOO. We compare the quality of the proposed method with other algorithms for multi-objective task scheduling by hybrid and parallel workflow jobs. The results highlight the better performance of the proposed approach than that of the compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abramson D, Buyya R, Giddy J (2002) A computational economy for grid computing and its implementation in the Nimrod-G resource broker [J]. Future Gener Comput Syst 18(8):1061–1074

    Article  MATH  Google Scholar 

  • Berman F, Wolski R, Casanova H et al (2003) Adaptive computing on the grid using AppLeS [J]. IEEE Trans Parallel Distrib Syst 14(4):369–382

    Article  Google Scholar 

  • Braun TD, Siegel HJ, Beck N et al (2001) A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems [J]. J Parallel Distrib Comput 61(6):810–837

    Article  Google Scholar 

  • Brooks DM, Bose P, Schuster SE et al (2000) Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors [J]. IEEE Micro 20(6):26–44

    Article  Google Scholar 

  • Buyya R, Yeo CS, Venugopal S et al (2009) Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility [J]. Future Gener Comput Syst 25(6):599–616

    Article  Google Scholar 

  • Chen CL, Huang SY, Tzeng YR et al (2014) A revised discrete particle swarm optimization algorithm for permutation flow-shop scheduling problem [J]. Soft Comput 18(11):2271–2282

    Article  Google Scholar 

  • Chen W, Deelman E (2012) Workflowsim: a toolkit for simulating scientific workflows in distributed environments [C]. In: 2012 IEEE 8th international conference on e-science (e-science), pp 1–8

  • Cheng J, Zhang G, Li Z et al (2012) Multi-objective ant colony optimization based on decomposition for bi-objective traveling salesman problems [J]. Soft Comput 16(4):597–614

    Article  MATH  Google Scholar 

  • Chen WN, Zhang J (2009) An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements [J]. IEEE Trans Syst Man Cybern Part C Appl Rev 39(1):29–43

    Article  Google Scholar 

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization [J]. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  • Coello CCA (2006) Evolutionary multi-objective optimization: a historical view of the field [J]. IEEE Comput Intell Mag 1(1):28–36

    Article  MathSciNet  Google Scholar 

  • Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Deelman E, Vahi K, Juve G et al (2015) Pegasus, a workflow management system for science automation [J]. Future Gener Comput Syst 46:17–35

    Article  Google Scholar 

  • Durillo JJ, Nae V, Prodan R (2014) Multi-objective energy-efficient workflow scheduling using list-based heuristics [J]. Future Gener Comput Syst 36:221–236

    Article  Google Scholar 

  • Durillo JJ, Prodan R (2014) Multi-objective workflow scheduling in Amazon EC2 [J]. Clust Comput 17(2):169–189

    Article  Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory [C]. In: The 6th international symposium on micro machine and human science, pp 39–43

  • Fard HM, Prodan R, Fahringer T (2014) Multi-objective list scheduling of workflow applications in distributed computing infrastructures [J]. J Parallel Distrib Comput 74(3):2152–2165

    Article  MATH  Google Scholar 

  • Frey J, Tannenbaum T, Livny M et al (2002) Condor-G: a computation management agent for multi-institutional grids [J]. Clust Comput 5(3):237–246

    Article  Google Scholar 

  • Gao L, Hailu A (2010) Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems [J]. Int J Comput Intell Syst 3(6):832–842

    Article  Google Scholar 

  • Garg SK, Buyya R, Siegel HJ (2009) Scheduling parallel applications on utility grids: time and cost trade-off management [C]. In: Proceedings of the thirty-second Australasian conference on computer science, vol 91. Australian Computer Society Inc, pp 151–160

  • Gómez J, Gil C, Baños R et al (2013) A Pareto-based multi-objective evolutionary algorithm for automatic rule generation in network intrusion detection systems [J]. Soft Comput 17(2):255–263

    Article  Google Scholar 

  • Hu Y-F, Ding Y-S, Hao K-R et al (2014) An immune orthogonal learning particle swarm optimization algorithm for routing recovery of wireless sensor networks with mobile sink [J]. Int J Syst Sci 45(3):337–350

    Article  MATH  Google Scholar 

  • Hu Y-F, Ding Y-S, Ren L-H et al (2015) An endocrine cooperative particle swarm optimization algorithm for routing recovery of wireless sensor networks with multiple mobile sinks [J]. Inf Sci 300:100–113

    Article  Google Scholar 

  • James K, Russell E (1995) Particle swarm optimization [C]. Proc IEEE Int Conf Neural Netw 1995:1942–1948

    Google Scholar 

  • Juve G, Chervenak A, Deelman E et al (2013) Characterizing and profiling scientific workflows [J]. Future Gener Comput Syst 29(3):682–692

    Article  Google Scholar 

  • Liu D, Tan KC, Goh CK et al (2007) A multiobjective memetic algorithm based on particle swarm optimization [J]. IEEE Trans Syst Man Cybern Part B Cybern 37(1):42–50

    Article  Google Scholar 

  • Subrata R, Zomaya AY, Landfeldt B (2008) A cooperative game framework for QoS guided job allocation schemes in grids [J]. IEEE Trans Comput 57(10):1413–1422

    Article  MathSciNet  Google Scholar 

  • Tao F, Feng Y, Zhang L et al (2014) CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling [J]. Appl Soft Comput 19:264–279

    Article  Google Scholar 

  • Teng S, Hay LL, Peng CE (2007) Multi-objective ordinal optimization for simulation optimization problems [J]. Automatica 43(11):1884–1895

    Article  MathSciNet  MATH  Google Scholar 

  • Topcuoglu H, Hariri S, Wu M (2002) Performance-effective and low-complexity task scheduling for heterogeneous computing [J]. IEEE Trans Parallel Distrib Syst 13(3):260–274

    Article  Google Scholar 

  • Viswanathan S, Veeravalli B, Robertazzi TG (2007) Resource-aware distributed scheduling strategies for large-scale computational cluster/grid systems [J]. IEEE Trans Parallel Distrib Syst 18(10):1450–1461

    Article  Google Scholar 

  • Wieczorek M, Hoheisel A, Prodan R (2009) Towards a general model of the multi-criteria workflow scheduling on the grid [J]. Future Gener Comput Syst 25(3):237–256

    Article  Google Scholar 

  • Yassa S, Chelouah R, Kadima H et al (2013) Multi-objective approach for energy-aware workflow scheduling in Cloud computing environments [J]. Sci World J Article ID 350934:1–13

    Google Scholar 

  • Yazdani D, Nasiri B, Sepas-Moghaddam A et al (2013) A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization [J]. Appl Soft Comput 13(4):2144–2158

    Article  Google Scholar 

  • Zhan ZH, Li J, Cao J et al (2013) Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems [J]. IEEE Trans Cybern 43(2):445–463

    Article  Google Scholar 

  • Zhang Y, Gong D, Ding Z (2011) Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer [J]. Expert Syst Appl 38(11):13933–13941

    Google Scholar 

  • Zhang F, Cao J, Li K et al (2014) Multi-objective scheduling of many tasks in cloud platforms [J]. Future Gener Comput Syst 37:309–320

    Article  Google Scholar 

  • Zheng W, Sakellariou R (2013) Budget-deadline constrained workflow planning for admission control [J]. J Grid Comput 11(4):633–651

    Article  Google Scholar 

  • Zitzler E, Thiele L, Laumanns M et al (2003) Performance assessment of multiobjective optimizers: an analysis and review [J]. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Key Project of the National Nature Science Foundation of China (No. 61134009), the National Nature Science Foundation of China (Nos. 61473077, 61473078), Cooperative research funds of the National Natural Science Funds Overseas and Hong Kong and Macao scholars (No. 61428302), Program for Changjiang Scholars from the Ministry of Education, Specialized Research Fund for Shanghai Leading Talents, Project of the Shanghai Committee of Science and Technology (No. 13JC1407500), Innovation Program of Shanghai Municipal Education Commission (No. 14ZZ067), the Fundamental Research Funds for the Central Universities (15D110423), Natural Science Foundation of Anhui Province (No. 1508085MF123), and Key Project of Anhui University Science Research (No. KJ2015A190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Ding, Y., Jin, Y. et al. Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system. Soft Comput 21, 4309–4322 (2017). https://doi.org/10.1007/s00500-016-2063-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2063-8

Keywords

Navigation