Skip to main content
Log in

Topological entropy of switched nonlinear and interconnected systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

A general upper bound for topological entropy of switched nonlinear systems is constructed, using an asymptotic average of upper limits of the matrix measures of Jacobian matrices of strongly persistent individual modes, weighted by their active rates. A general lower bound is constructed as well, using a similar weighted average of lower limits of the traces of these Jacobian matrices. In a case of interconnected structure, the general upper bound is readily applied to derive upper bounds for entropy that depend only on “network-level” information. In a case of block-diagonal structure, less conservative upper and lower bounds for entropy are constructed. In each case, upper bounds for entropy that require less information about the switching signal are also derived. The upper bounds for entropy and their relations are illustrated by numerical examples of a switched Lotka–Volterra ecosystem model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In this subsection, an inequality between two vectors or matrices of the same size, or between a vector or matrix and a scalar, is to be interpreted entrywise (e.g., \( A \ge 0 \) means that A is a nonnegative matrix).

  2. Note that \( \tilde{A}^\textrm{N}\) has to be a Metzler matrix; thus, its eigenvalue with the largest real part is real [10, Th. 10.2, p. 167].

  3. We denote by \( 0< t_1< t_2 < \cdots \) the sequence of switches and let \( t_0:= 0 \), with \( \sigma (t) = 1 \) on \( [t_{2k}, t_{2k+1}) \) and \( \sigma (t) = 2 \) on \( [t_{2k+1}, t_{2k+2}) \).

  4. Specifically, following the proof of [2, Th. 3] S contains the \( \omega \)-limit set of (50) if for all \( p \in {\mathcal {P}}\) and \( x \in \mathbb {R}_{\ge 0}^n \backslash (S \cup \{0\}) \), we have \( {\textbf{1}}_n^\top f_p(x) < 0 \), i.e., \( r_p^\top x + x^\top A_p x < 0 \). Note that \( r_p^\top x + x^\top A_p x = r_p^\top x + x^\top (A_p + A_p^\top )\, x/2 \le (r_p + \lambda _{\max }(A_p + A_p^\top )\, x/2)^\top x \), which is negative if \( 2 r_p^i + \lambda _{\max }(A_p + A_p^\top )\, x_i < 0 \) for all \( i \in \{1, \ldots , n\} \) as \( x \in \mathbb {R}_{\ge 0}^n \backslash \{0\} \).

  5. In this example, we use the set S defined by (52) which contains the \( \omega \)-limit set for every switched system (50) satisfying (51). For a given family of coefficients, one can usually construct more precise over-approximation of the \( \omega \)-limit set and thus obtain less conservative upper bounds for entropy, such as those in [51, Example 3.6].

  6. As shown in “Appendix A,” their main difference is that, in the proof of Lemma 5, the variational arguments are applied to the line segment connecting two solutions instead of the one connecting two initial states, which results in the different locations of convex hulls in, e.g., \( {{\overline{\eta }}}_\sigma (t) \) and \( {{\overline{\eta }}}_\sigma ^\textrm{alt}(t) \).

  7. In our construction we ignore the case when (K) falls between integer multiples of \(( \theta )\), but if that happens then the construction can be slightly modified by taking an arbitrary \(( \bar{x} \in K )\) and defining the grid by \(( G(\theta ) := \{\bar{x} + (k_1 \theta _1, \ldots , k_n \theta _n) \in K: k_1, \ldots , k_n \in \mathbb {Z}\} )\) so that it is nonempty.

  8. Also, the lower bound (66) does not require a condition similar to (63). For this reason, in [51, Lemma 2.3] the requirement that all \( \theta _i \) are nonincreasing in T is not actually needed for the lower bound [51, eq. (13)].

  9. There was a typo in [50, Lemma 2] where [50, eq. (17)] should be replaced with (63), as the inequality in (63) needs to hold for each \( i \in \{1, \ldots , n\} \) instead of the upper limits of the sum.

References

  1. Adler RL, Konheim AG, McAndrew MH (1965) Topological entropy. Trans Am Math Soc 114(2):309–319

    MathSciNet  MATH  Google Scholar 

  2. Aleksandrov AY, Chen Y, Platonov AV et al (2011) Stability analysis for a class of switched nonlinear systems. Automatica 47(10):2286–2291

    MathSciNet  MATH  Google Scholar 

  3. Aliprantis CD, Border KC (2006) Infinite dimensional analysis. Springer, Berlin

    MATH  Google Scholar 

  4. Berger GO, Jungers RM (2020) Worst-case topological entropy and minimal data rate for state observation of switched linear systems. In: 23rd International conference on hybrid systems: computation and control, Sydney, Australia

  5. Bernstein DS (2009) Matrix mathematics. Princeton University Press, Princeton

    MATH  Google Scholar 

  6. Boichenko VA, Leonov GA (1998) Lyapunov’s direct method in estimates of topological entropy. J Math Sci 91(6):3370–3379

    MathSciNet  MATH  Google Scholar 

  7. Bowen R (1971) Entropy for group endomorphisms and homogeneous spaces. Trans Am Math Soc 153:401–414

    MathSciNet  MATH  Google Scholar 

  8. Bowen R (1971) Periodic points and measures for axiom A diffeomorphisms. Trans Am Math Soc 154:377–397

    MathSciNet  MATH  Google Scholar 

  9. Brockett RW (1970) Finite dimensional linear systems. SIAM, Philadelphia

    MATH  Google Scholar 

  10. Bullo F (2022) Lectures on network systems. Kindle Direct Publishing

  11. Colonius F (2012) Minimal bit rates and entropy for exponential stabilization. SIAM J Control Optim 50(5):2988–3010

    MathSciNet  MATH  Google Scholar 

  12. Colonius F, Kawan C (2009) Invariance entropy for control systems. SIAM J Control Optim 48(3):1701–1721

    MathSciNet  MATH  Google Scholar 

  13. Colonius F, Kawan C, Nair GN (2013) A note on topological feedback entropy and invariance entropy. Syst Control Lett 62(5):377–381

    MathSciNet  MATH  Google Scholar 

  14. Desoer CA, Vidyasagar M (2009) Feedback systems: input–output properties. SIAM, Philadelphia

    MATH  Google Scholar 

  15. Dinaburg EI (1970) The relation between topological entropy and metric entropy. Dokl Akad Nauk SSSR 190(1):19–22 (In Russian)

    MathSciNet  MATH  Google Scholar 

  16. Hespanha JP, Ortega A, Vasudevan L (2002) Towards the control of linear systems with minimum bit-rate. In: 15th International symposium on mathematical theory of networks and systems, Notre Dame, IN, USA

  17. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Kawan C, Delvenne JC (2016) Network entropy and data rates required for networked control. IEEE Trans Control Netw Syst 3(1):57–66

    MathSciNet  MATH  Google Scholar 

  20. Kawan C, Latushkin Y (2016) Some results on the entropy of non-autonomous dynamical systems. Dyn Syst 31(3):251–279

    MathSciNet  MATH  Google Scholar 

  21. Kolmogorov AN (1958) A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. Dokl Akad Nauk SSSR 119(5):861–864 (In Russian)

    MathSciNet  MATH  Google Scholar 

  22. Kolyada S, Snoha L (1996) Topological entropy of nonautonomous dynamical systems. Random Comput Dyn 4(2–3):205–233

    MathSciNet  MATH  Google Scholar 

  23. Liberzon D (2003) Switching in systems and control. Birkhäuser, Boston

    MATH  Google Scholar 

  24. Liberzon D (2012) Calculus of variations and optimal control theory. Princeton University Press, Princeton

    MATH  Google Scholar 

  25. Liberzon D (2014) Finite data-rate feedback stabilization of switched and hybrid linear systems. Automatica 50(2):409–420

    MathSciNet  MATH  Google Scholar 

  26. Liberzon D (2021) On topological entropy of interconnected nonlinear systems. IEEE Control Syst Lett 5(6):2210–2214

    MathSciNet  Google Scholar 

  27. Liberzon D, Hespanha JP (2005) Stabilization of nonlinear systems with limited information feedback. IEEE Trans Autom Control 50(6):910–915

    MathSciNet  MATH  Google Scholar 

  28. Liberzon D, Mitra S (2018) Entropy and minimal bit rates for state estimation and model detection. IEEE Trans Autom Control 63(10):3330–3344

    MathSciNet  MATH  Google Scholar 

  29. Liu T, Jiang ZP, Hill DJ (2018) Nonlinear control of dynamic networks. CRC Press, Boca Raton

    Google Scholar 

  30. Lu W, di Bernardo M (2016) Contraction and incremental stability of switched Carathéodory systems using multiple norms. Automatica 70:1–8

    MathSciNet  MATH  Google Scholar 

  31. Mancilla-Aguilar JL (2000) A condition for the stability of switched nonlinear systems. IEEE Trans Autom Control 45(11):2077–2079

    MathSciNet  MATH  Google Scholar 

  32. Matveev AS, Pogromsky AY (2016) Observation of nonlinear systems via finite capacity channels: constructive data rate limits. Automatica 70:217–229

    MathSciNet  MATH  Google Scholar 

  33. Matveev AS, Proskurnikov AV, Pogromsky A et al (2019) Comprehending complexity: data-rate constraints in large-scale networks. IEEE Trans Autom Control 64(10):4252–4259

    MathSciNet  MATH  Google Scholar 

  34. Nair GN, Evans RJ (2003) Exponential stabilisability of finite-dimensional linear systems with limited data rates. Automatica 39(4):585–593

    MathSciNet  MATH  Google Scholar 

  35. Nair GN, Evans RJ, Mareels IMY et al (2004) Topological feedback entropy and nonlinear stabilization. IEEE Trans Autom Controld 49(9):1585–1597

    MathSciNet  MATH  Google Scholar 

  36. Russo G, di Bernardo M, Sontag ED (2013) A contraction approach to the hierarchical analysis and design of networked systems. IEEE Trans Autom Control 58(5):1328–1331

    MATH  Google Scholar 

  37. Savkin AV (2006) Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control. Automatica 42(1):51–62

    MathSciNet  MATH  Google Scholar 

  38. Shorten R, Wirth FR, Mason O et al (2007) Stability criteria for switched and hybrid systems. SIAM Rev 49(4):545–592

    MathSciNet  MATH  Google Scholar 

  39. Sibai H, Mitra S (2017) Optimal data rate for state estimation of switched nonlinear systems. In: 20th International conference on hybrid systems: computation and control, Pittsburgh, PA, USA, pp 71–80

  40. Sontag ED (2010) Contractive systems with inputs. In: Willems JC, Hara S, Ohta Y, et al (eds) Perspectives in mathematical system theory, control, and signal processing. Springer, Berlin, pp 217–228

  41. Tatikonda S, Mitter S (2004) Control under communication constraints. IEEE Trans Autom Control 49(7):1056–1068

    MathSciNet  MATH  Google Scholar 

  42. Tomar MS, Zamani M (2020) Compositional quantification of invariance feedback entropy for networks of uncertain control systems. IEEE Control Syst Lett 4(4):827–832

    MathSciNet  Google Scholar 

  43. Vicinansa GS, Liberzon D (2019) Estimation entropy for regular linear switched systems. In: 58th IEEE conference on decision control, Nice, France, pp 5754–5759

  44. Vidyasagar M (2002) Nonlinear systems analysis, 2nd edn. SIAM, Philadelphia

    MATH  Google Scholar 

  45. Vu L, Liberzon D (2005) Common Lyapunov functions for families of commuting nonlinear systems. Syst Control Lett 54(5):405–416

    MathSciNet  MATH  Google Scholar 

  46. Yang G, Liberzon D (2015) A Lyapunov-based small-gain theorem for interconnected switched systems. Syst Control Lett 78:47–54

    MathSciNet  MATH  Google Scholar 

  47. Yang G, Liberzon D (2018) Feedback stabilization of switched linear systems with unknown disturbances under data-rate constraints. IEEE Trans Autom Control 63(7):2107–2122

    MATH  Google Scholar 

  48. Yang G, Schmidt AJ, Liberzon D (2018) On topological entropy of switched linear systems with diagonal, triangular, and general matrices. In: 57th IEEE conference on decision control, Miami Beach, FL, USA, pp 5682–5687

  49. Yang G, Hespanha JP, Liberzon D (2019) On topological entropy and stability of switched linear systems. In: 22nd ACM International conference on hybrid systems: computation control, Montreal, Canada, pp 119–127

  50. Yang G, Schmidt AJ, Liberzon D et al (2020) Topological entropy of switched linear systems: general matrices and matrices with commutation relations. Math Control Signals Syst 32(3):411–453

    MathSciNet  MATH  Google Scholar 

  51. Yang G, Liberzon D, Hespanha JP (2021) Topological entropy of switched nonlinear systems. In: 24th ACM international conference on hybrid systems: computation and control, Nashville, TN, USA

  52. Yang G, Liberzon D, Hespanha JP (2023) Topological entropy of switched nonlinear and interconnected systems. Technical report, Rutgers University. Available at https://guosong-yang.github.io/publications

Download references

Acknowledgements

This work was supported in part by the National Science Foundation Grant CMMI-2106043 and in part by the National Science Foundation Grant EPCN-1608880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosong Yang.

Additional information

This paper is dedicated to Prof. Eduardo D. Sontag on the occasion of his 70th birthday. As detailed later in the paper, our work is heavily influenced by Prof. Sontag’s research contributions to the areas of contractive nonlinear and interconnected systems.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proofs of Lemmas 4 and 5

Lemmas 4 and 5 are established based on similar properties of a linear time-varying (LTV) system

$$\begin{aligned} \dot{x} = A(t)\, x \end{aligned}$$
(A1)

with a piecewise-continuous, matrix-valued function \( A: \mathbb {R}_{\ge 0} \rightarrow \mathbb {R}^{n \times n} \). The solution to (A1) at time \( t \ge 0 \) with initial state v is given by \( \xi (t, v) = \Phi _A(t, 0)\, v \), where \( \Phi _A(t, 0) \) is the state-transition matrix and satisfies Coppel’s inequalities [14, Th. 2.8.27, p. 34]

$$\begin{aligned} e^{\int _{0}^{t} -\mu (-A(s)) \textrm{d}s} |v| \le |\Phi _A(t, 0)\, v| \le e^{\int _{0}^{t} \mu (A(s)) \textrm{d}s} |v| \qquad \forall t \ge 0,\, v \in \mathbb {R}^n \end{aligned}$$
(A2)

and Liouville’s formula [9, Th. 4.1, p. 28]

$$\begin{aligned} \det (\Phi _A(t, 0)) = e^{\int _{0}^{t} {{\,\textrm{tr}\,}}(A(s)) \textrm{d}s} \qquad \forall t \ge 0. \end{aligned}$$
(A3)

Proof of Lemma 4

We prove Lemma 4 by writing the Jacobian matrix of a solution to the switched nonlinear system (2) with respect to initial state \( J_x \xi _\sigma (t, x) \) as a matrix solution to the LTV system (A1) with a suitable function A(t) , using variational arguments from nonlinear systems analysis (see, e.g., [24, Sect. 4.2.4]). For all \( v \in \mathbb {R}^n \), we have \( J_x \xi _\sigma (0, v) = I \) and

$$\begin{aligned} \partial _t J_x \xi _\sigma (t, v) = J_x {{\dot{\xi }}}_\sigma (t, v) = J_x f_{\sigma (t)}(\xi _\sigma (t, v))\, J_x \xi _\sigma (t, v) \end{aligned}$$

for all \( t \ge 0 \) that are not switches. Hence, for each fixed \( v \in \mathbb {R}^n \), the matrix \( J_x \xi _\sigma (t, v) \) is equal to the state-transition matrix \( \Phi _A(t, 0) \) of (A1) with \( A(t) = J_x f_{\sigma (t)}(\xi _\sigma (t, v)) \).

First, given arbitrary initial states \( x, {{\bar{x}}} \in K \), let

$$\begin{aligned} \nu (\rho ):= \rho {{\bar{x}}} + (1 - \rho )\, x, \qquad \rho \in [0, 1]. \end{aligned}$$

Then \( \nu (\rho ) \in {{\,\textrm{co}\,}}(K) \) and \( \nu '(\rho ) = {{\bar{x}}} - x \) for all \( \rho \in [0, 1] \). Hence,

$$\begin{aligned}&|\xi _\sigma (t, {{\bar{x}}}) - \xi _\sigma (t, x)|\\&\quad = |\xi _\sigma (t, \nu (1)) - \xi _\sigma (t, \nu (0))| = \bigg | \int _{0}^{1} J_x \xi _\sigma (t, \nu (\rho )) ({{\bar{x}}} - x) \textrm{d}\rho \bigg | \\&\quad \le \int _{0}^{1} |J_x \xi _\sigma (t, \nu (\rho )) ({{\bar{x}}} - x)| \textrm{d}\rho \le \int _{0}^{1} e^{\int _{0}^{t} \mu (J_x f_{\sigma (s)}(\xi _\sigma (s, \nu (\rho )))) \textrm{d}s} |{{\bar{x}}} - x| \textrm{d}\rho \\&\quad \le \Big ( \max _{v \in {{\,\textrm{co}\,}}(K)} e^{\int _{0}^{t} \mu (J_x f_{\sigma (s)}(\xi _\sigma (s, v))) \textrm{d}s} \Big ) |{{\bar{x}}} - x| = e^{{{\overline{\eta }}}_\sigma (t)} |{{\bar{x}}} - x| \end{aligned}$$

for all \( t \ge 0 \), where the second inequality follows from the second inequality in (A2) with \( A(t) = J_x f_{\sigma (t)}(\xi _\sigma (t, \nu (\rho ))) \) and \( \Phi _A(t, 0) = J_x \xi _\sigma (t, \nu (\rho )) \), and the last equality follows from the transformation (58). Hence, (56) holds.

Second, for each fixed \( v \in \mathbb {R}^n \), Liouville’s formula (A3) with \( A(t) = J_x f_{\sigma (t)}(\xi _\sigma (t, v)) \) and \( \Phi _A(t, 0) = J_x \xi _\sigma (t, v) \) implies that

$$\begin{aligned} \det (J_x \xi _\sigma (t, v)) = e^{\int _{0}^{t} {{\,\textrm{tr}\,}}(J_x f_{\sigma (s)}(\xi _\sigma (s, v))) \textrm{d}s} \qquad \forall t \ge 0. \end{aligned}$$

Then

$$\begin{aligned} \begin{aligned} {{\,\textrm{vol}\,}}(\xi _\sigma (t, K))&= \int _{K} |\det (J_x \xi _\sigma (t, v))| \textrm{d}v \ge \Big ( \min _{v \in K} |\det (J_x \xi _\sigma (t, v))| \Big ) {{\,\textrm{vol}\,}}(K) \\&= \Big ( \min _{v \in K} e^{\int _{0}^{t} {{\,\textrm{tr}\,}}(J_x f_{\sigma (s)}(\xi _\sigma (s, v))) \textrm{d}s} \Big ) {{\,\textrm{vol}\,}}(K) = e^{\gamma _\sigma (t)} {{\,\textrm{vol}\,}}(K) \end{aligned} \end{aligned}$$

for all \( t \ge 0 \), where the last equality follows from the transformation (58). Hence, (57) holds. \(\square \)

Proof of Lemma 5

We prove Lemma 5 by writing the difference between two solutions to the switched nonlinear system (2) as a solution to the LTV system (A1) with a suitable function A(t) , using variational arguments similar to those in the proof of Lemma 4. Given arbitrary initial states \( x, {{\bar{x}}} \in K \), let

$$\begin{aligned} \nu (t, \rho ):= \rho \xi _\sigma (t, {{\bar{x}}}) + (1 - \rho ) \xi _\sigma (t, x), \qquad \rho \in [0, 1],\, t \ge 0. \end{aligned}$$

Then \( \nu (t, \rho ) \in {{\,\textrm{co}\,}}(\xi _\sigma (t, K)) \) and \( \partial _\rho \nu (t, \rho ) = \xi _\sigma (t, {{\bar{x}}}) - \xi _\sigma (t, x) \) for all \( \rho \in [0, 1] \) and \( t \ge 0 \). Hence,

$$\begin{aligned} \begin{aligned} \partial _t (\xi _\sigma (t, {{\bar{x}}}) - \xi _\sigma (t, x))&= f_{\sigma (t)}(\xi _\sigma (t, {{\bar{x}}})) - f_{\sigma (t)}(\xi _\sigma (t, x)) \\&= f_{\sigma (t)}(\nu (t, 1)) - f_{\sigma (t)}(\nu (t, 0)) \\&= \bigg ( \int _{0}^{1} J_x f_{\sigma (t)}(\nu (t, \rho )) \textrm{d}\rho \bigg ) (\xi _\sigma (t, {{\bar{x}}}) - \xi _\sigma (t, x)) \end{aligned} \end{aligned}$$

for all \( t \ge 0 \) that are not switches. Therefore, \( \xi _\sigma (t, {{\bar{x}}}) - \xi _\sigma (t, x) \) is the solution to (A1) with \( A(t) = \int _{0}^{1} J_x f_{\sigma (t)}(\nu (t, \rho )) \textrm{d}\rho \) at time t with initial state \( {{\bar{x}}} - x \). Consequently, (A2) implies that

$$\begin{aligned} \begin{aligned} e^{\int _{0}^{t} -\mu \big ( -\int _{0}^{1} J_x f_{\sigma (s)}(\nu (s, \rho )) \textrm{d}\rho \big ) \textrm{d}s} |{{\bar{x}}} - x|&\le |\xi _\sigma (t, {{\bar{x}}}) - \xi _\sigma (t, x)| \\&\le e^{\int _{0}^{t} \mu \big ( \int _{0}^{1} J_x f_{\sigma (s)}(\nu (s, \rho )) \textrm{d}\rho \big ) \textrm{d}s} |{{\bar{x}}} - x| \end{aligned} \end{aligned}$$

for all \( t \ge 0 \). Moreover, as the matrix measure \( \mu \) is a convex function, Jensen’s inequality [3, Th. 11.24, p. 417] implies that

$$\begin{aligned} \begin{aligned} \mu \bigg ( \int _{0}^{1} J_x f_{\sigma (t)}(\nu (t, \rho )) \textrm{d}\rho \bigg )&\le \int _{0}^{1} \mu (J_x f_{\sigma (t)}(\nu (t, \rho )) \textrm{d}\rho \\&\le \max _{v \in {{\,\textrm{co}\,}}(\xi _\sigma (t, K))} \mu (J_x f_{\sigma (t)}(v)) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} -\mu \bigg ( {-\int _{0}^{1}} J_x f_{\sigma (t)}(\nu (t, \rho )) \textrm{d}\rho \bigg )&\ge \int _{0}^{1} -\mu (-J_x f_{\sigma (t)}(\nu (t, \rho )) \textrm{d}\rho \\&\ge \min _{v \in {{\,\textrm{co}\,}}(\xi _\sigma (t, K))} -\mu (-J_x f_{\sigma (t)}(v)) \end{aligned} \end{aligned}$$

for all \( t \ge 0 \). Then (59) follows from the transformation (58). \(\square \)

Appendix B Proof of Lemma 6

  1. 1.

    If (62) holds, then

    $$\begin{aligned} K \subset \bigcup _{x \in G(\theta )} R(x) \subset \bigcup _{x \in G(\theta )} B_{f_\sigma }(x, \varepsilon , T). \end{aligned}$$

    Hence, \( G(\theta ) \) is \( (T, \varepsilon ) \)-spanning following the definition (4), and thus,

    $$\begin{aligned} S(f_\sigma , \varepsilon , T, K) \le \#G(\theta ) \le \prod _{i=1}^{n} \bigg ( \bigg \lfloor \frac{2 r_2}{\theta _i} \bigg \rfloor + 1 \bigg ) \le \prod _{i=1}^{n} \bigg ( \frac{2 r_2}{\theta _i} + 1 \bigg ). \end{aligned}$$

    If (62) holds for all \( T \ge 0 \) and \( \varepsilon > 0 \), then the definition of entropy (5) implies that

    $$\begin{aligned} h(f_\sigma , K)&\le \limsup _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \sum _{i=1}^{n} \frac{\log (2 r_2/\theta _i + 1)}{T} \nonumber \\&\le \limsup _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \sum _{i=1}^{n} \frac{\log (1/\theta _i)}{T} \nonumber \\&\quad \, + \sum _{i=1}^{n} \limsup _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \frac{\log (\theta _i + 2 r_2)}{T}, \end{aligned}$$
    (B4)

    where the last inequality holds as the upper limit is a subadditive function. Moreover, for all \( i \in \{1, \ldots , n\} \), the summands in the last term in (B4) satisfy

    $$\begin{aligned} \begin{aligned}&\limsup _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \frac{\log (\theta _i + 2 r_2)}{T} \le \limsup _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \frac{\max \{\log (2\theta _i),\, \log (4 r_2)\}}{T} \\&\qquad = \max \left\{ \limsup _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \frac{\log (2 \theta _i)}{T},\, \lim _{T \rightarrow \infty } \frac{\log (4 r_2)}{T} \right\} \\&\qquad = \max \left\{ \limsup _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \frac{\log \theta _i}{T},\, 0 \right\} , \end{aligned} \end{aligned}$$

    where the inequality holds as the logarithm is an increasing function and \( \theta _i, r_2 > 0 \), and the last equality holds in part because \( r_2 \) is independent of T. Then (63) implies (64).Footnote 9

  2. 2.

    If (65) holds, then for all distinct points \( x, {{\bar{x}}} \in G(\theta ) \), we have \( {{\bar{x}}} \notin B_{f_\sigma }(x, \varepsilon , T) \) as \( {{\bar{x}}} \notin R(x) \). Hence, \( G(\theta ) \) is \( (T, \varepsilon ) \)-separated following the definition (6), and thus,

    $$\begin{aligned} N(f_\sigma , \varepsilon , T, K) \ge \#G(\theta ) \ge \prod _{i=1}^{n} \bigg \lfloor \frac{2 r_1}{\theta _i} \bigg \rfloor \ge \prod _{i=1}^{n} \max \left\{ \frac{2 r_1}{\theta _i} - 1,\, 1 \right\} . \end{aligned}$$

    If (65) holds for all \( T \ge 0 \) and \( \varepsilon > 0 \), then the alternative definition of entropy (7) implies that

    $$\begin{aligned} h(f_\sigma , K)&\ge \liminf _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \sum _{i=1}^{n} \frac{\log (\max \{2 r_1/\theta _i - 1,\, 1\})}{T} \nonumber \\&\ge \liminf _{\varepsilon \searrow 0} \limsup _{T \rightarrow \infty } \sum _{i=1}^{n} \frac{\log (1/\theta _i)}{T} \nonumber \\&\quad +\, \sum _{i=1}^{n} \liminf _{\varepsilon \searrow 0} \liminf _{T \rightarrow \infty } \frac{\log (\max \{2 r_1 - \theta _i,\, \theta _i\})}{T}, \end{aligned}$$
    (B5)

    where the last inequality holds as the lower limit is a superadditive function, and for two functions \( g, {{\bar{g}}}: \mathbb {R}_{\ge 0} \rightarrow \mathbb {R}\), we have

    $$\begin{aligned} \limsup _{T \rightarrow \infty } (g(T) + {{\bar{g}}}(T)) \ge \limsup _{T \rightarrow \infty } g(T) + \liminf _{T \rightarrow \infty } {{\bar{g}}}(T). \end{aligned}$$

    Moreover, for all \( i \in \{1, \ldots , n\} \), the summands in the last term in (B5) satisfy

    $$\begin{aligned} \begin{aligned} \liminf _{\varepsilon \searrow 0} \liminf _{T \rightarrow \infty } \frac{\log (\max \{2 r_1 - \theta _i,\, \theta _i\})}{T}&\ge \liminf _{\varepsilon \searrow 0} \liminf _{T \rightarrow \infty } \frac{\log (\max \{r_1,\, \theta _i\})}{T} \\&\ge \liminf _{\varepsilon \searrow 0} \liminf _{T \rightarrow \infty } \frac{\log r_1}{T} = 0, \end{aligned} \end{aligned}$$

    where the first inequality holds as the logarithm is an increasing function and \( r_1, \theta _i > 0 \), and the equality holds as \( r_1 \) is independent of T. Hence, (66) holds. \(\square \)

Appendix C Proof of Lemma 7

We prove only the lower bound (69) here; the upper bound (68) and lower bound (70) can be established using similar arguments (the omitted proof can be found in [52]). For brevity, we define the following functions on \( \mathbb {R}_{\ge 0} \):

$$\begin{aligned} \begin{aligned} \eta _p^i(t)&:= \int _{0}^{t} a_p^i(s) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s, \quad p \in {\mathcal {P}}, \\ {{\bar{a}}}^i(T)&:= \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}} \eta _p^i(t), \end{aligned} \qquad i \in \{1, \ldots , m\} \end{aligned}$$

with \( {{\bar{a}}}^i(0):= \max \{a_{\sigma (0)}^i(0),\, 0\} \). Also, note that for two continuous functions \( g, {{\bar{g}}}: \mathbb {R}_{\ge 0} \rightarrow \mathbb {R}\), we have

$$\begin{aligned} \max _{t \in [0, T]} (g(t) + {{\bar{g}}}(t)) \ge \max _{t \in [0, T]} g(t) + \min _{t \in [0, T]} {{\bar{g}}}(t) \qquad \forall T \ge 0. \end{aligned}$$
(C6)

First, we eliminate modes that are not persistent. The definition of \( {\mathcal {P}}_\infty \) in (11) implies that \( t_\infty := \sup \{t \ge 0: \sigma (t) \in {\mathcal {P}}\backslash {\mathcal {P}}_\infty \} \) is finite. Then

$$\begin{aligned} \begin{aligned} {{\bar{a}}}^i(T)&\ge \frac{1}{T} \bigg ( \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty } \eta _p^i(t) + \min _{t \in [0, T]} \sum _{p \in {\mathcal {P}}\backslash {\mathcal {P}}_\infty } \eta _p^i(t) \bigg ) \\&= \frac{1}{T} \bigg ( \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty } \eta _p^i(t) + \min _{t \in [0, t_\infty ]} \sum _{p \in {\mathcal {P}}\backslash {\mathcal {P}}_\infty } \eta _p^i(t) \bigg ) \end{aligned} \end{aligned}$$

for all \( i \in \{1, \ldots , m\} \) and \( T > t_\infty \), where the inequality follows from (C6). Hence,

$$\begin{aligned} \limsup _{T \rightarrow \infty } \sum _{i=1}^{m} {{\bar{a}}}^i(T) \ge \limsup _{T \rightarrow \infty } \sum _{i=1}^{m} \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty } \eta _p^i(t). \end{aligned}$$

Second, we eliminate modes that are persistent but not strongly persistent. For all \( i \in \{1, \ldots , m\} \) and \( p \in {\mathcal {P}}_\infty \), as \( {\check{a}}_p^i = \liminf _{t \rightarrow \infty :\, \sigma (t) = p} a_p^i(t) \) are finite, \( {{\check{\alpha }}}_p^i:= \inf _{t \ge 0} a_p^i(t) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (t)) \) are finite as well. Then

$$\begin{aligned} \begin{aligned} \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty } \eta _p^i(t)&\ge \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty ^+} \eta _p^i(t) + \frac{1}{T} \min _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty \backslash {\mathcal {P}}_\infty ^+} \eta _p^i(t) \\&\ge \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty ^+} \eta _p^i(t) + \sum _{p \in {\mathcal {P}}_\infty \backslash {\mathcal {P}}_\infty ^+} \min \{{{\check{\alpha }}}_p^i,\, 0\} \rho _p(T) \end{aligned} \end{aligned}$$

for all \( i \in \{1, \ldots , m\} \) and \( T > 0 \), where the first inequality follows from (C6). Moreover, for all \( p \notin {\mathcal {P}}_\infty ^+\), as \( \rho _p(t) \ge 0 \) for all \( t \ge 0 \) and \( {{\hat{\rho }}}_p = \limsup _{t \rightarrow \infty } \rho _p(t) = 0 \), we have \( {{\hat{\rho }}}_p = \lim _{t \rightarrow \infty } \rho _p(t) = 0 \). Then

$$\begin{aligned} \lim _{T \rightarrow \infty } \sum _{i=1}^{m} \sum _{p \in {\mathcal {P}}_\infty \backslash {\mathcal {P}}_\infty ^+} \min \{{{\check{\alpha }}}_p^i,\, 0\} \rho _p(T) = \sum _{i=1}^{m} \sum _{p \in {\mathcal {P}}_\infty \backslash {\mathcal {P}}_\infty ^+} \min \{{{\check{\alpha }}}_p^i,\, 0\} {{\hat{\rho }}}_p = 0. \end{aligned}$$

Hence,

$$\begin{aligned} \limsup _{T \rightarrow \infty } \sum _{i=1}^{m} {{\bar{a}}}^i(T) \ge \limsup _{T \rightarrow \infty } \sum _{i=1}^{m} \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty ^+} \eta _p^i(t). \end{aligned}$$

Finally, as \( {\mathcal {P}}_\infty ^+\) is a finite set, the lower limit in the definition of \( {\check{a}}_p^i \) implies that, for each \( \delta > 0 \), there exists a large enough \( t_\delta \ge 0 \) such that

$$\begin{aligned} a_p^i(t)> {\check{a}}_p^i - \delta \qquad \forall i \in \{1, \ldots , m\},\, p \in {\mathcal {P}}_\infty ^+,\, t > t_\delta : \sigma (t) = p. \end{aligned}$$

For all \( i \in \{1, \ldots , m\} \) and \( t \ge 0 \), consider

$$\begin{aligned} \begin{aligned} \sum _{p \in {\mathcal {P}}_\infty ^+} \eta _p^i(t)&= \sum _{p \in {\mathcal {P}}_\infty ^+} \int _{0}^{t} (a_p^i(s) - {\check{a}}_p^i + \delta + {\check{a}}_p^i - \delta ) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s \\&= \sum _{p \in {\mathcal {P}}_\infty ^+} {\check{a}}_p^i \tau _p(t) - \delta t + \sum _{p \in {\mathcal {P}}_\infty ^+} \int _{0}^{t} (a_p^i(s) - {\check{a}}_p^i + \delta ) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s. \end{aligned} \end{aligned}$$

If \( t > t_\delta \), then

$$\begin{aligned} \sum _{p \in {\mathcal {P}}_\infty ^+} \int _{0}^{t} (a_p^i(s) - {\check{a}}_p^i + \delta ) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s \ge \sum _{p \in {\mathcal {P}}_\infty ^+} \int _{0}^{t_\delta } (a_p^i(s) - {\check{a}}_p^i + \delta ) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s. \end{aligned}$$

Otherwise \( t \in [0, t_\delta ] \), and hence,

$$\begin{aligned} \begin{aligned}&\sum _{p \in {\mathcal {P}}_\infty ^+} \int _{0}^{t} (a_p^i(s) - {\check{a}}_p^i + \delta ) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s \\&\quad \ge \min _{{{\bar{t}}} \in [0, t_\delta ]} \sum _{p \in {\mathcal {P}}_\infty ^+} \int _{0}^{{{\bar{t}}}} (a_p^i(s) - {\check{a}}_p^i + \delta ) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s. \end{aligned} \end{aligned}$$

Combining the two cases, we obtain

$$\begin{aligned} \sum _{p \in {\mathcal {P}}_\infty ^+} \eta _p^i(t) \ge \sum _{p \in {\mathcal {P}}_\infty ^+} {\check{a}}_p^i \tau _p(t) - \delta t + \min _{{{\bar{t}}} \in [0, t_\delta ]} \sum _{p \in {\mathcal {P}}_\infty ^+} \int _{0}^{{{\bar{t}}}} (a_p^i(s) - {\check{a}}_p^i + \delta ) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s. \end{aligned}$$

Then

$$\begin{aligned} \begin{aligned} \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty ^+} \eta _p^i(t)&\ge \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty ^+} {\check{a}}_p^i \tau _p(t) - \delta \\&\quad +\, \frac{1}{T} \min _{{{\bar{t}}} \in [0, t_\delta ]} \sum _{p \in {\mathcal {P}}_\infty ^+} \int _{0}^{{{\bar{t}}}} (a_p^i(s) - {\check{a}}_p^i + \delta ) {{\,\mathrm{\mathbbm {1}}\,}}_p(\sigma (s)) \textrm{d}s \end{aligned} \end{aligned}$$

for all \( T > 0 \), where the inequality follows in part from (C6). Hence,

$$\begin{aligned} \limsup _{T \rightarrow \infty } \sum _{i=1}^{m} {{\bar{a}}}_i(T) \ge \limsup _{T \rightarrow \infty } \sum _{i=1}^{m} \frac{1}{T} \max _{t \in [0, T]} \sum _{p \in {\mathcal {P}}_\infty ^+} {\check{a}}_p^i \tau _p(t) - m \delta . \end{aligned}$$

Then (69) holds as \( \delta > 0 \) is arbitrary. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Liberzon, D. & Hespanha, J.P. Topological entropy of switched nonlinear and interconnected systems. Math. Control Signals Syst. 35, 641–683 (2023). https://doi.org/10.1007/s00498-023-00346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-023-00346-5

Keywords

Navigation