Skip to main content
Log in

Admissibility of retarded diagonal systems with one-dimensional input space

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We investigate infinite-time admissibility of a control operator B in a Hilbert space state-delayed dynamical system setting of the form \({\dot{z}}(t)=Az(t)+A_1 z(t-\tau )+Bu(t)\), where A generates a diagonal \(C_0\)-semigroup, \(A_1\in {\mathcal {L}}(X)\) is also diagonal and \(u\in L^2(0,\infty ;{\mathbb {C}})\). Our approach is based on the Laplace embedding between \(L^2\) and the Hardy space \(H^2({\mathbb {C}}_+)\). The results are expressed in terms of the eigenvalues of A and \(A_1\) and the sequence representing the control operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amann H (1995) Linear and quasilinear parabolic problems, vol 89. Monographs in mathematics. Birkhäuser Basel, Basel

    Book  MATH  Google Scholar 

  2. Arendt W, Batty CJK, Hieber M, Neubrander F (2010) Vector-valued Laplace transforms and Cauchy problems, vol 96, 2nd edn. Monographs in mathematics. Birkhäuser Verlag AG, Basel

    MATH  Google Scholar 

  3. Baker CTH (2000) Retarded differential equations. J. Comput. Appl. Math. 125:309–335

    Article  MathSciNet  MATH  Google Scholar 

  4. Balakrishnan AV (1981) Applied functional analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  5. Batkái A, Piazzera S (2005) Semigroups for delay equations, vol 10. Research notes in mathematics. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  6. Brezis H (2011) Functional analysis. Universitext. Sobolev spaces and Partial Differential equations. Springer-Verlag, New York

  7. Curtain RF (2003) Regular linear systems and their reciprocals: applications to Riccati equations. Syst. Control Lett. 49:81–89

    Article  MathSciNet  MATH  Google Scholar 

  8. Engel K-J (1999) Spectral theory and generator property for one-sided coupled operator matrices. Semigroup Forum 58(2):267–295

    Article  MathSciNet  MATH  Google Scholar 

  9. Engel K-J, Nagel R (2000) One-parameter semigroup for linear evolution equations, vol 194. Graduate texts in mathematics. Springer-Verlag, Berlin

    MATH  Google Scholar 

  10. Evans LC (2002) Partial differential equations, vol 19. Graduate studies in mathematics. American Mathematical Society, Providence

    Google Scholar 

  11. Garnett J (2007) Bounded analytic functions, vol 236. Graduate texts in mathematics. Springer-Verlag, New York, Basel

    MATH  Google Scholar 

  12. Grabowski P, Callier FM (1996) Admissible observation operators, semigroup criteria of admissibility. Integral Equ. Oper. Theory 25(2):182–198

    Article  MathSciNet  MATH  Google Scholar 

  13. Ho LF, Russell DL (1983) Admissible input elements for systems in Hilbert space and a Carleson measure criterion. SIAM J. Control Optim. 21:616–640

    MathSciNet  MATH  Google Scholar 

  14. Ho LF, Russell DL (1983) Erratum: Admissible input elements for systems in Hilbert space and a Carleson measure criterion. SIAM J. Control Optim. 21:985–986

    Article  MathSciNet  Google Scholar 

  15. Jacob B, Partington JR (2004) Admissibility of control and observation operators for semigroups: a survey. In: Ball JA, WilliamHelton J, Klaus M, Rodman L (eds) Current trends in operator theory and its applications. Birkhäuser Basel, Basel, pp 199–221

    Chapter  Google Scholar 

  16. Jacob B, Partington JR, Pott S (2013) On Laplace–Carleson embedding theorems. J. Funct. Anal. 264:783–814

    Article  MathSciNet  MATH  Google Scholar 

  17. Jacob B, Partington JR, Pott S (2014) Applications of Laplace–Carleson embeddings to admissibility and controllability. SIAM J. Control Optim. 52(2):1299–1313

    Article  MathSciNet  MATH  Google Scholar 

  18. Kapica R, Zawiski R (2022) Conditions for asymptotic stability of first order scalar differential-difference equation with complex coefficients. ArXiv e-prints , arXiv:2204.08729v2

  19. Kappel F (1986) Semigroups and delay equations, semigroups, theory and applications. In: Brezis H, Crandall M, Kappel F (eds) Pitman research notes in mathematics series, vol 152. Longman Scientific and Technical, Harlow, New York, pp 136–176

  20. Khodja FA, Bouzidi C, Dupaix C, Maniar L (2014) Null controllability of retarded parabolic equations. Math. Control Relat. Fields 4(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  21. Ya Khusainov D, Pokojovy M, Azizbayov EI (2013) Classical solvability for a linear 1D heat equation with constant delay, vol 316. Konstanzer Schriften in Mathematik

  22. Koosis P (2008) Introduction to \(H_p\) spaces, vol 115, 2nd edn. Cambridge tracts in mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Partington JR (1988) An introduction to Hankel operators, vol 13. London mathematical society student texts. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  24. Partington JR, Zawiski R (2019) Admissibility of state delay diagonal systems with one-dimensional input space. Complex Anal. Oper. Theory 13:2463–2485

    Article  MathSciNet  MATH  Google Scholar 

  25. Rudin W (1987) Real and complex analysis, 3rd edn. McGraw-Hill, Singapore

    MATH  Google Scholar 

  26. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser Verlag AG, Basel

    Book  MATH  Google Scholar 

  27. Walton K, Marshall JE (1984) Closed form solutions for time delay systems’ cost functionals. Int. J. Control 39:1063–1071

    Article  MATH  Google Scholar 

  28. Weiss G (1988) Admissible input elements for diagonal semigroups on \(l^2\). Syst. Control Lett. 10:79–82

    Article  MATH  Google Scholar 

  29. Weiss G (1999) A powerful generalization of the Carleson measure theorem? Open problems in mathematical systems and control theory. Springer, London, Comm. Control Engrg., pp 267–272

  30. Wu J (1996) Theory and applications of partial functional differential equations. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  31. Wynn A (2010) \(\alpha \)-admissibility of observation operators in discrete and continuous time. Complex Anal. Oper. Theory 4(1):109–131

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Yuriy Tomilov for many valuable comments and mentioning to them reference [19].

Funding

Rafał Kapica’s research was supported by the Faculty of Applied Mathematics AGH UST statutory tasks within subsidy of Ministry of Education and Science. Jonathan R. Partington indicates no external funding. Radosław Zawiski’s work was performed when he was a visiting researcher at the Centre for Mathematical Sciences of the Lund University, hosted by Sandra Pott, and supported by the Polish National Agency for Academic Exchange (NAWA) within the Bekker programme under the agreement PPN/BEK/2020/1/00226/U/00001/A/00001.

Author information

Authors and Affiliations

Authors

Contributions

JRP and RZ are responsible for the initial conception of the research and the approach method. RZ performed the research concerning every element needed for the single component as well as the whole system analysis. Examples for unbounded generators were provided by RK and RZ, while examples for direct state-delayed systems come from the work of JRP and RZ. Figures 1 and 2 were prepared by RZ. All authors participated in writing the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Radosław Zawiski.

Ethics declarations

Conflict of interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 19

We rewrite J as

$$\begin{aligned} J= & {} \frac{1}{2\pi }\int _{-\infty }^{\infty }\frac{d\omega }{\vert i\omega -\uplambda -\gamma \textrm{e}^{-i\omega \tau }\vert ^2} \nonumber \\= & {} \frac{1}{2\pi }\int _{-\infty }^{\infty }\frac{d\omega }{(i\omega -\uplambda -\gamma \textrm{e}^{-i\omega \tau })(-i\omega -\overline{\uplambda }-\overline{\gamma }\textrm{e}^{i\omega \tau })}\nonumber \\= & {} \frac{1}{2\pi i}\int _{-i\infty }^{i\infty }\frac{ds}{(s-\uplambda -\gamma \textrm{e}^{-s\tau })(-s-\overline{\uplambda }-\overline{\gamma }\textrm{e}^{s\tau })}\nonumber \\= & {} \frac{1}{2\pi i}\int _{-i\infty }^{i\infty }E_1(s)E_2(s)\,ds, \end{aligned}$$
(96)

where

$$\begin{aligned} E_1(s):=\frac{1}{s-\uplambda -\gamma \textrm{e}^{-s\tau }}, \qquad E_2(s):=\frac{1}{-s-\overline{\uplambda }-\overline{\gamma }\textrm{e}^{s\tau }}. \end{aligned}$$
(97)

Note that writing explicitly \(E_1\) and \(E_2\) as functions of s and parameters \(\uplambda \), \(\gamma \) and \(\tau \) we have

$$\begin{aligned} E_1(s,\uplambda ,\gamma ,\tau )=E_2(-s,\overline{\uplambda },\overline{\gamma },\tau ). \end{aligned}$$

Let \({\mathcal {E}}_1\) be the set of poles of \(E_1\) and \({\mathcal {E}}_2\) be the set of poles of \(E_2\). As, by assumption, \(\gamma \textrm{e}^{-ib\tau }\in \Lambda _{\tau ,a}\) Proposition 18 states that \({\mathcal {E}}_1\subset {\mathbb {C}}_-\) and \({\mathcal {E}}_2\subset {\mathbb {C}}_+\). Thus, we have that \(E_1\) is analytic in \({\mathbb {C}}\setminus {\mathbb {C}}_-\) while \(E_2\) is analytic in \({\mathbb {C}}\setminus {\mathbb {C}}_+\).

Let \(s_n\in {\mathcal {E}}_1\), i.e. \(s_n-\uplambda -\gamma \textrm{e}^{-s_n\tau }=0\). Rearranging gives

$$\begin{aligned} \frac{\gamma }{s_n-\uplambda }=\textrm{e}^{s_n\tau }. \end{aligned}$$

Substituting above to \(E_2\) gives

$$\begin{aligned} E_2(s_n)=-\frac{s_n-\uplambda }{(s_n+\overline{\uplambda })(s_n-\uplambda )+|\gamma |^2}. \end{aligned}$$
(98)

and this value is finite as \(s_n\not \in {\mathcal {E}}_2\). Rearranging (96) to account for (98) gives

$$\begin{aligned} J=\frac{1}{2\pi i}\int _{-i\infty }^{i\infty }\Bigg (E_1(s)\bigg (E_2(s)+\frac{s-\uplambda }{(s+\overline{\uplambda })(s-\uplambda )+|\gamma |^2}\bigg )-E_1(s)\frac{s-\uplambda }{(s+\overline{\uplambda })(s-\uplambda )+|\gamma |^2}\Bigg )\,ds.\nonumber \\ \end{aligned}$$
(99)

The above integrand has no poles at the roots \(\{z_1,z_2\}\) of

$$\begin{aligned} (s+\overline{\uplambda })(s-\uplambda )+|\gamma |^2=0. \end{aligned}$$
(100)

However, as the two parts of the integrand in (99) will be treated separately, we need to consider poles introduced by \(z_1\) and \(z_2\) with regard to the contour of integration. Rewrite also (100) as

$$\begin{aligned} (s+\overline{\uplambda })(s-\uplambda )+|\gamma |^2=(s-z_1)(s-z_2)=0. \end{aligned}$$
(101)

From this point onwards we analyse three cases given by the right side of (63). Assume first that \(|\gamma |<|a|\). Then

$$\begin{aligned} z_1=-\sqrt{a^2-|\gamma |^2}+ib,\quad z_2=\sqrt{a^2-|\gamma |^2}+ib. \end{aligned}$$
(102)

Fig. 2a shows integration contours \(\Gamma _1(r)=\Gamma _I(r)+\Gamma _L(r)\) and \(\Gamma _2(r)=\Gamma _I(r)+\Gamma _R(r)\) for \(r\in (0,\infty )\) used for calculation of J. In particular \(\Gamma _I\) runs along the imaginary axis, \(\Gamma _L\) is a left semicircle and \(\Gamma _R\) is a right semicircle.

Fig. 2
figure 2

Contours of integration in (99): part a is used for the case \(|\gamma |<|a|\), part b is used when \(|\gamma |\ge |a|\). Both parts are drawn for a sufficiently large r so that \(\Gamma _I(r)=C\), \(\Gamma _L(r)=C_L\) and \(\Gamma _R(r)=C_R\) and they enclose particular values of \(z_1\) and \(z_2\) in (102) and (110), respectively. The location of infinitesimally small semicircles around \(z_1\) and \(z_2\) in part b is to be modified depending on the location of \(z_1\) and \(z_2\) on the imaginary axis

Due to the above argument for a sufficiently large r we get

$$\begin{aligned} J= & {} \frac{1}{2\pi i}\lim _{r\rightarrow \infty }\int _{\Gamma _I(r)} \Bigg (E_1(s)\bigg (E_2(s)+\frac{s-\uplambda }{(s+\overline{\uplambda })(s-\uplambda ) +|\gamma |^2}\bigg )-E_1(s)\frac{s-\uplambda }{(s+\overline{\uplambda })(s-\uplambda ) +|\gamma |^2}\Bigg )\,ds \nonumber \\= & {} \frac{1}{2\pi i}\int _{C+C_L}E_1(s)\bigg (E_2(s)+\frac{s-\uplambda }{(s-z_1)(s-z_2)} \bigg )\,ds \nonumber \\{} & {} \quad -\frac{1}{2\pi i}\int _{C+C_R}E_1(s)\frac{s-\uplambda }{(s-z_1)(s-z_2)}\,ds. \end{aligned}$$
(103)

In calculation of the above we used the fact both integrals round the semicircles at infinity are zero as the integrands are, at most, of order \(s^{-2}\) and for every fixed \(\varphi , \uplambda , \gamma , \tau \),

$$\begin{aligned} \lim _{r\rightarrow \infty }\frac{1}{r\textrm{e}^{i\varphi }-\uplambda -\gamma \textrm{e}^{-r\textrm{e}^{i\varphi }\tau }}=0. \end{aligned}$$
(104)

Define separate parts of (103) as

$$\begin{aligned} J_L:=\frac{1}{2\pi i}\int _{C+C_L}E_1(s)\bigg (E_2(s)+\frac{s-\uplambda }{(s-z_1)(s-z_2)}\bigg )\,ds \end{aligned}$$
(105)

and

$$\begin{aligned} J_R:=-\frac{1}{2\pi i}\int _{C+C_R}E_1(s)\frac{s-\uplambda }{(s-z_1)(s-z_2)}\,ds \end{aligned}$$
(106)

and consider them separately.

To calculate \(J_L\) note that from (98), it follows that for every \(s_n\in {\mathcal {E}}_1\) the value

$$\begin{aligned} E_2(s_n)=-\frac{s_n-\uplambda }{(s_n-z_1)(s_n-z_2)} \end{aligned}$$

is finite and that implies that \(\{z_1,z_2\}\cap {\mathcal {E}}_1=\emptyset \). Thus, the only pole of the integrand in (105) encircled by the \(C+C_L\) contour is at \(z_1\). Denoting this integrand by f the residue formula gives

$$\begin{aligned} \hbox {Res}_{z_1}f(s)=\lim _{s\rightarrow z_1}(s-z_1)f(s)=E_1(z_1)\frac{z_1-\uplambda }{z_1-z_2}. \end{aligned}$$

As the \(C+C_L\) contour is counter-clockwise, we obtain

$$\begin{aligned} J_L=E_1(z_1)\frac{z_1-\uplambda }{z_1-z_2}. \end{aligned}$$
(107)

To calculate \(J_R\) note that the only pole encircled by the \(C+C_R\) contour is at \(z_2\). Denoting the integrand of (106) by g the residue formula gives

$$\begin{aligned} \hbox {Res}_{z_2}g(s)=\lim _{s\rightarrow z_2}(s-z_2)g(s)=E_1(z_2)\frac{z_2-\uplambda }{z_2-z_1}. \end{aligned}$$

As the \(C+C_R\) contour is clockwise, we obtain

$$\begin{aligned} J_R=E_1(z_2)\frac{z_2-\uplambda }{z_2-z_1}. \end{aligned}$$
(108)

Thus, we obtain

$$\begin{aligned} J=J_L+J_R=\frac{1}{z_2-z_1}\Big ((\uplambda -z_1)E_1(z_1)+(z_2-\uplambda )E_1(z_2)\Big ), \end{aligned}$$
(109)

where \(z_1,z_2\) are given by (102). We substitute these values for \(z_1\) and \(z_2\) and perform tedious calculations to obtain

$$\begin{aligned} J&=\frac{1}{2\sqrt{a^2-|\gamma |^2}}\\&\quad \times \frac{\gamma \textrm{e}^{-ib\tau }\Big (\textrm{e}^{\sqrt{a^2-|\gamma |^2}\tau }(a-\sqrt{a^2-|\gamma |^2})+\textrm{e}^{- \sqrt{a^2-|\gamma |^2}\tau }(-a-\sqrt{a^2-|\gamma |^2})\Big )}{\gamma \textrm{e}^{-ib\tau }\Big (\overline{\gamma }\textrm{e}^{ib\tau }-\textrm{e}^{-\sqrt{a^2-|\gamma |^2}\tau }(-\sqrt{a^2-|\gamma |^2}-a)-\textrm{e}^{\sqrt{a^2-|\gamma |^2}\tau }(\sqrt{a^2-|\gamma |^2}-a)+\gamma \textrm{e}^{-ib\tau }\Big )}\\&=\frac{1}{2\sqrt{a^2-|\gamma |^2}}\\&\quad \frac{\textrm{e}^{\sqrt{a^2-|\gamma |^2}\tau }\big (a-\sqrt{a^2-|\gamma |^2}\big ) +\textrm{e}^{-\sqrt{a^2-|\gamma |^2}\tau }\big (-a-\sqrt{a^2-|\gamma |^2}\big )}{2\textrm{Re}(\gamma \textrm{e}^{-ib\tau }) +\textrm{e}^{\sqrt{a^2-|\gamma |^2}\tau }\big (a-\sqrt{a^2-|\gamma |^2}\big ) -\textrm{e}^{-\sqrt{a^2-|\gamma |^2}\tau }\big (-a-\sqrt{a^2-|\gamma |^2}\big )}. \end{aligned}$$

Assume now that \(|\gamma |>|a|\). The roots \(\{z_1,z_2\}\) of (101) are

$$\begin{aligned} z_1=i\sqrt{a^2-|\gamma |^2}+ib,\quad z_2=-i\sqrt{a^2-|\gamma |^2}+ib. \end{aligned}$$
(110)

To calculate J in (99), we now use the contour shown in Fig. 2b. We again define \(J_L\) and \(J_R\) as in (105) and (106), respectively, but with this new contour.

As \(\gamma \textrm{e}^{-ib\tau }\in \Lambda _{\tau ,a}\) by Proposition 18 no pole of \(E_1\) lies on the imaginary axis. Hence, no pole of the integrand in (105) is encircled by the \(C+C_L\) contour and this gives

$$\begin{aligned} J_L=0. \end{aligned}$$
(111)

For \(J_R\) the only poles of the integrand of (106) encircled by the \(C+C_R\) contour are \(z_1\) and \(z_2\). Denoting this integrand by g the residue formula gives

$$\begin{aligned} \hbox {Res}_{z_1}g(s)=E_1(z_1)\frac{z_1-\uplambda }{z_1-z_2},\quad \hbox {Res}_{z_2}g(s)=E_1(z_2)\frac{z_2-\uplambda }{z_2-z_1}. \end{aligned}$$

As the \(C+C_R\) contour is clockwise, we obtain

$$\begin{aligned} J_R=E_1(z_1)\frac{z_1-\uplambda }{z_1-z_2}+E_1(z_2)\frac{z_2-\uplambda }{z_2-z_1}. \end{aligned}$$
(112)

Thus, we obtain

$$\begin{aligned} J=J_L+J_R=\frac{1}{z_2-z_1}\Big ((\uplambda -z_1)E_1(z_1)+(z_2-\uplambda )E_1(z_2)\Big ), \end{aligned}$$
(113)

where \(z_1,z_2\) are given by (110). Substituting these values, again after tedious calculations, we obtain

$$\begin{aligned} J=\,&\frac{1}{2i\sqrt{|\gamma |^2-a^2}}\\&\times \frac{a\Big (\textrm{e}^{i\sqrt{|\gamma |^2-a^2}\tau }-\textrm{e}^{-i\sqrt{|\gamma |^2-a^2}\tau }\Big ) -i\sqrt{|\gamma |^2-a^2}\Big (\textrm{e}^{i\sqrt{|\gamma |^2-a^2}\tau }+\textrm{e}^{-i\sqrt{|\gamma |^2-a^2}\tau }\Big )}{2\textrm{Re}(\gamma \textrm{e}^{-ib\tau })+a\Big (\textrm{e}^{i\sqrt{|\gamma |^2-a^2}\tau }+\textrm{e}^{-i\sqrt{|\gamma |^2-a^2}\tau }\Big ) -i\sqrt{|\gamma |^2-a^2}\Big (\textrm{e}^{i\sqrt{|\gamma |^2-a^2}\tau }-\textrm{e}^{-i\sqrt{|\gamma |^2-a^2}\tau }\Big )}\\ =\,&\frac{1}{2\sqrt{|\gamma |^2-a^2}}\\&\times \frac{a\sin \big (\sqrt{|\gamma |^2-a^2}\tau \big )-\sqrt{|\gamma |^2-a^2}\cos \big (\sqrt{|\gamma |^2-a^2}\tau \big )}{\textrm{Re}(\gamma \textrm{e}^{-ib\tau })+a\cos \big (\sqrt{|\gamma |^2-a^2}\tau \big )+\sqrt{|\gamma |^2-a^2}\sin \big (\sqrt{|\gamma |^2-a^2}\tau \big )}. \end{aligned}$$

For the last case assume that \(|\gamma |=|a|>0\), as the assumption \(\gamma \textrm{e}^{-b\tau }\in \Lambda _{\tau ,0}\) excludes the case \(|a|=|\gamma |=0\) because \(0\not \in \Lambda _{\tau ,0}\). Instead of \(\{z_1,z_2\}\) we now have a single double root \(z_0\) of (101) given by

$$\begin{aligned} z_0=ib. \end{aligned}$$
(114)

As \(z_0\) lies on the imaginary axis we use the contour shown in Fig. 2b tailored to the case \(z_1=z_2=z_0\). Define \(J_L\) and \(J_R\) as in (105) and (106), respectively, but with the contour tailored for \(z_0\). For the same reasons as in (111) we have

$$\begin{aligned} J_L=0. \end{aligned}$$
(115)

For \(J_R\) the only pole of the integrand of (106) encircled by the \(C+C_R\) contour is \(z_0\). Denoting this integrand by g the residue formula for a double root gives

$$\begin{aligned} \hbox {Res}_{z_0}g(s)=\lim _{s\rightarrow z_0}\frac{d}{ds}\left( (s-z_0)^2g(s)\right) =\frac{(a\tau -1)\gamma \textrm{e}^{-ib\tau }}{(a+\gamma \textrm{e}^{-ib\tau })^2}. \end{aligned}$$

With the current assumption we have that \(a^2=\gamma \overline{\gamma }\). By this and the fact that the \(C+C_R\) contour is clockwise, we obtain

$$\begin{aligned} J_R=\frac{1}{2}\frac{a\tau -1}{\textrm{Re}(\gamma \textrm{e}^{-ib\tau })+a}. \end{aligned}$$
(116)

As \(J=J_L+J_R\) this finishes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapica, R., Partington, J.R. & Zawiski, R. Admissibility of retarded diagonal systems with one-dimensional input space. Math. Control Signals Syst. 35, 433–465 (2023). https://doi.org/10.1007/s00498-023-00345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-023-00345-6

Keywords

Mathematics Subject Classification

Navigation