Skip to main content
Log in

On state estimation for nonlinear systems under random access wireless protocols

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This article is dedicated to Eduardo D. Sontag on the occasion of his 70th birthday. We build upon fundamental stability concepts developed by Sontag, such as input-to-state stability and its related properties, to study a relevant application in industrial internet of things, namely estimation for wireless networked control systems. Particularly, we study emulation-based state estimation for nonlinear plants that communicate with a remote observer over a shared wireless network subject to packet losses. To reduce bandwidth usage, a stochastic communication protocol is employed to determine which node should be given access to the network. Each node has a different successful transmission probability. We describe the overall closed-loop system as a stochastic hybrid model, which allows us to capture the behaviour both between and at transmission instants, whilst covering network features such as random transmission instants, packet losses and stochastic scheduling. We then provide sufficient conditions on the transmission rate that guarantee an input-to-state stability property (in expectation) for the corresponding estimation error system. We illustrate our results in the design of circle criterion observers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that the right-hand side inequality in (12) implies \(\varvec{\lambda }>|A|\), more details in the proof in Sect. 6.1.

  2. It suffices to verify that the holding times \(S_{M+1}-S_M\) are i.i.d. and have positive finite mean. Since \(T_k\)’s and \(\tau _k\)’s are i.i.d., then the holding time \(S_{M+1}-S_M\) is also i.i.d.. Next, we have \(\mathbb {E}\left\{ S_{M+1}-S_M\right\} =\mathbb {E}\left\{ T_M\right\} \mathbb {E}\left\{ \tau _{M,i}\right\} \). Particularly, \(\mathbb {E}\left\{ \tau _{M,i}\right\} =1/\varvec{\lambda }\), and \(\mathbb {E}\left\{ T_M\right\} \) can be found in Lemma 1. Consequently, \(\mathbb {E}\left\{ S_{M+1}-S_M\right\} =\frac{1}{\varvec{\lambda }}\sum _{j=1}^{N}\frac{N}{[N-(j-1)]p_j}\), which is positive and finite since \(p_j\in (0,1]\) for all \(j\in \mathcal {N}\), \(\varvec{\lambda }\in (0,\infty )\), and \(N\ge 1\).

References

  1. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom Control 34(4):435–443

    Article  MathSciNet  MATH  Google Scholar 

  2. Dashkovskiy S, Efimov DV, Sontag ED (2011) Input to state stability and allied system properties. Autom Remote Control 72(8):1579–1614

    Article  MathSciNet  MATH  Google Scholar 

  3. Isidori A (1995) Nonlinear control systems. Communications and control engineering, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  4. Kokotović P, Arcak M (2001) Constructive nonlinear control: a historical perspective. Automatica 37(5):637–662

    Article  MathSciNet  MATH  Google Scholar 

  5. Angeli D, Sontag ED, Wang Y (2000) A characterization of integral input-to-state stability. IEEE Trans Autom Control 45(6):1082–1097

    Article  MathSciNet  MATH  Google Scholar 

  6. Angeli D, Sontag ED, Wang Y (2003) Input-to-state stability with respect to inputs and their derivatives. Int J Robust Nonlinear Control IFAC Affil J 13(11):1035–1056

    Article  MathSciNet  MATH  Google Scholar 

  7. Sontag ED, Wang Y (1999) Notions of input to output stability. Syst Control Lett 38(4–5):235–248

    Article  MathSciNet  MATH  Google Scholar 

  8. Angeli D, Sontag ED (1999) Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst Control Lett 38(4–5):209–217

    Article  MathSciNet  MATH  Google Scholar 

  9. Christofides PD, Teel AR (1996) Singular perturbations and input-to-state stability. IEEE Trans Autom Control 41(11):1645–1650

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang Z-P, Teel AR, Praly L (1994) Small-gain theorem for ISS systems and applications. Math Control Signals Syst 7(2):95–120

    Article  MathSciNet  MATH  Google Scholar 

  11. Marino R, Tomei P (1999) Nonlinear output feedback tracking with almost disturbance decoupling. IEEE Trans Autom Control 44(1):18–28

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu X (1991) On state observers for nonlinear systems. Syst Control Lett 17(6):465–473

    Article  MathSciNet  MATH  Google Scholar 

  13. Shim H, Liberzon D (2015) Nonlinear observers robust to measurement disturbances in an ISS sense. IEEE Trans Autom Control 61(1):48–61

    Article  MathSciNet  MATH  Google Scholar 

  14. Nešić D, Teel A (2004) Input-output stability properties of networked control systems. IEEE Trans Autom Control 49(10):1650–1667

    Article  MathSciNet  MATH  Google Scholar 

  15. Nešić D, Teel AR (2004) Input-to-state stability of networked control systems. Automatica 40(12):2121–2128

    MathSciNet  MATH  Google Scholar 

  16. Postoyan R, Nešić D (2012) A framework for the observer design for networked control systems. IEEE Trans Autom Control 57(5):1309–1314

    Article  MathSciNet  MATH  Google Scholar 

  17. Park P, Ergen SC, Fischione C, Lu C, Johansson KH (2017) Wireless network design for control systems: a survey. IEEE Commun Surv Tutor 20(2):978–1013

    Article  Google Scholar 

  18. Ahlén A, Akerberg J, Eriksson M, Isaksson AJ, Iwaki T, Johansson KH, Knorn S, Lindh T, Sandberg H (2019) Toward wireless control in industrial process automation: a case study at a paper mill. IEEE Control Syst Mag 39(5):36–57

    Article  MathSciNet  Google Scholar 

  19. Ugrinovskii V, Fridman E (2014) A round-robin type protocol for distributed estimation with \(H_{\infty }\) consensus. Syst Control Lett 69:103–110

    Article  MathSciNet  MATH  Google Scholar 

  20. Walsh G, Ye H, Bushnell L (2002) Stability analysis of networked control systems. IEEE Trans Control Syst Technol 10(3):438–446

    Article  Google Scholar 

  21. Tabbara M, Nešić D (2008) Input-output stability of networked control systems with stochastic protocols and channels. IEEE Trans Autom Control 53(5):1160–1175

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen D, Nixon M, Mok A (2010) Why WirelessHART. In: WirelessHART\(^{{\rm TM}}\). Springer, Boston, pp 195–199 (2010)

  23. Maass AI, Nešić D (2019) Stabilization of non-linear networked control systems closed over a lossy WirelessHART network. IEEE Control Syst Lett 3(4):996–1001

    Article  MathSciNet  Google Scholar 

  24. Donkers MCF, Heemels WPMH, Bernardini D, Bemporad A, Shneer V (2012) Stability analysis of stochastic networked control systems. Automatica 48(5):917–925

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu K, Fridman E, Johansson KH (2015) Networked control with stochastic scheduling. IEEE Trans Autom Control 60(11):3071–3076

    Article  MathSciNet  MATH  Google Scholar 

  26. Zou L, Wang Z, Gao H (2016) Observer-based \(\cal{H} _{\infty }\) control of networked systems with stochastic communication protocol: The finite-horizon case. Automatica 63:366–373

    Article  MathSciNet  MATH  Google Scholar 

  27. Zou L, Wang Z, Gao H, Alsaadi FE (2017) Finite-horizon \(\cal{H} _{\infty }\) consensus control of time-varying multiagent systems with stochastic communication protocol. IEEE Trans Cybern 47(8):1830–1840

    Article  Google Scholar 

  28. Zhang J, Fridman E (2021) Dynamic event-triggered control of networked stochastic systems with scheduling protocols. IEEE Trans Autom Control 66:6139–6147

    Article  MathSciNet  MATH  Google Scholar 

  29. Yuan Y, Wang Z, Zhang P, Liu H (2018) Near-optimal resilient control strategy design for state-saturated networked systems under stochastic communication protocol. IEEE Trans Cybern 49(8):3155–3167

    Article  Google Scholar 

  30. Liu S, Wang Z, Wang L, Wei G (2018) On quantized \(\cal{H} _{\infty }\) filtering for multi-rate systems under stochastic communication protocols: the finite-horizon case. Inf Sci 459:211–223

    Article  MathSciNet  MATH  Google Scholar 

  31. Zou L, Wang Z, Han Q-L, Zhou D (2018) Recursive filtering for time-varying systems with random access protocol. IEEE Trans Autom Control 64(2):720–727

    MathSciNet  MATH  Google Scholar 

  32. Zhao Y, He X, Ma L, Liu H (2022) Estimator-based iterative deviation-free residual generator for fault detection under random access protocol. Neurocomputing 493:583–591

    Article  Google Scholar 

  33. Zou L, Wang Z, Hu J, Gao H (2017) On \(\cal{H} _{\infty }\) finite-horizon filtering under stochastic protocol: dealing with high-rate communication networks. IEEE Trans Autom Control 62(9):4884–4890

    Article  MathSciNet  MATH  Google Scholar 

  34. Alsaadi FE, Luo Y, Liu Y, Wang Z (2018) State estimation for delayed neural networks with stochastic communication protocol: the finite-time case. Neurocomputing 281:86–95

    Article  Google Scholar 

  35. Chen S, Guo J, Ma L (2019) Sliding mode observer design for discrete nonlinear time-delay systems with stochastic communication protocol. Int J Control Autom Syst 17(7):1666–1676

    Article  Google Scholar 

  36. Zou L, Wang Z, Han Q-L, Zhou D (2019) Moving horizon estimation of networked nonlinear systems with random access protocol. IEEE Trans Syst Man Cybern Syst 51:2937–2948

    Article  Google Scholar 

  37. Ju Y, Liu D, Ding D, Wei G (2022) Distributed cubature Kalman filtering for nonlinear systems with stochastic communication protocol. Asian J Control

  38. Walsh GC, Beldiman O, Bushnell LG (2001) Asymptotic behavior of nonlinear networked control systems. IEEE Trans Autom Control 46(7):1093–1097

    Article  MathSciNet  MATH  Google Scholar 

  39. Maass AI, Nešić D, Postoyan R, Varma VS, Lasaulce S (2022) Wireless networked control systems: stochastic stability and power control. Submitted to Automatica. arXiv:2212.05471

  40. Maass AI, Nešić D, Postoyan R, Dower PM (2019) Observer design for non-linear networked control systems with persistently exciting protocols. IEEE Trans Autom Control 65(7):2992–3006

    Article  MATH  Google Scholar 

  41. Maass AI, Nešić D (2021) State estimation of non-linear systems over random access wireless networks. In: Proceedings of the 60th IEEE conference on decision and control, Austin, Texas, USA

  42. Tabbara M, Nešić D, Teel AR (2007) Stability of wireless and wireline networked control systems. IEEE Trans Autom Control 52(9):1615–1630

    Article  MathSciNet  MATH  Google Scholar 

  43. Hespanha JP, Teel AR (2006) Stochastic impulsive systems driven by renewal processes. In: 17th international symposium on mathematical theory of networks and systems (MTNS06)

  44. Hu Z, Yang Z, Mu X (2019) Stochastic input-to-state stability of random impulsive nonlinear systems. J Frankl Inst 356(5):3030–3044

    Article  MathSciNet  MATH  Google Scholar 

  45. Agarwal R, Hristova S, O’Regan D (2013) Exponential stability for differential equations with random impulses at random times. Adv Differ Equ 2013(1):1–12

    Article  MathSciNet  MATH  Google Scholar 

  46. Tijms HC (2003) A first course in stochastic models. Wiley, Chichester

    Book  MATH  Google Scholar 

  47. Garone E, Sinopoli B, Goldsmith A, Casavola A (2012) LQG control for MIMO systems over multiple erasure channels with perfect acknowledgment. IEEE Trans Autom Control 57(2):450–456

    Article  MathSciNet  MATH  Google Scholar 

  48. Haßlinger G, Hohlfeld O (2008) The Gilbert–Elliott model for packet loss in real time services on the internet. In: 14th GI/ITG conference-measurement, modelling and evaluation of computer and communication systems. VDE, pp 1–15

  49. Postoyan R, Van de Wouw N, Nešić D, Heemels WPMH (2014) Tracking control for nonlinear networked control systems. IEEE Trans Autom Control 59(6):1539–1554

    Article  MathSciNet  MATH  Google Scholar 

  50. Ahmed-Ali T, Lamnabhi-Lagarrigue F (2012) High gain observer design for some networked control systems. IEEE Trans Autom Control 57(4):995–1000

    Article  MathSciNet  MATH  Google Scholar 

  51. Chandra AK, Raghavan P, Ruzzo WL, Smolensky R, Tiwari P (1996) The electrical resistance of a graph captures its commute and cover times. Comput Complex 6(4):312–340

    Article  MathSciNet  MATH  Google Scholar 

  52. Upfal E, Mitzenmacher M (2005) Probability and computing: randomized algorithms and probabilistic analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  53. Stirzaker D (2005) Stochastic processes and models. Oxford University Press, Oxford

    MATH  Google Scholar 

  54. Nasipuri A, Zhuang J, Das SR (1999) A multichannel CSMA MAC protocol for multihop wireless networks. In: IEEE wireless communications and networking conference (Cat. No. 99TH8466). IEEE, vol 3, pp 1402–1406

  55. Teel AR, Subbaraman A, Sferlazza A (2014) Stability analysis for stochastic hybrid systems: a survey. Automatica 50(10):2435–2456

    Article  MathSciNet  MATH  Google Scholar 

  56. Hespanha JP (2005) A model for stochastic hybrid systems with application to communication networks. Nonlinear Anal Theory Methods Appl 62(8):1353–1383

    Article  MathSciNet  MATH  Google Scholar 

  57. Astolfi D, Alessandri A, Zaccarian L (2020) Stubborn and dead-zone redesign for nonlinear observers and filters. IEEE Trans Autom Control 66(2):667–682

    Article  MathSciNet  MATH  Google Scholar 

  58. Bernard P, Andrieu V, Astolfi D (2022) Observer design for continuous-time dynamical systems. Annu Rev Control

  59. Jiao T, Zheng WX, Xu S (2017) Stability analysis for a class of random nonlinear impulsive systems. Int J Robust Nonlinear Control 27(7):1171–1193

    Article  MathSciNet  MATH  Google Scholar 

  60. Rajamani R (1998) Observers for Lipschitz nonlinear systems. IEEE Trans Autom Control 43(3):397–401

    Article  MathSciNet  MATH  Google Scholar 

  61. Arcak M, Kokotovic P (2001) Observer-based control of systems with slope-restricted nonlinearities. IEEE Trans Autom Control 46(7):1146–1150

    Article  MathSciNet  MATH  Google Scholar 

  62. Khalil HK (2015) Nonlinear control. Pearson Education, New York

    Google Scholar 

  63. Arcak M (2000) Unmodeled dynamics in robust nonlinear control. Ph.D. thesis, University of California, Santa Barbara, United States

  64. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Hoboken

    MATH  Google Scholar 

  65. Williams D (1991) Probability with martingales. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  66. Jiang Z-P, Teel AR, Praly L (1994) Small-gain theorem for ISS systems and applications. Math Control Signals Syst 7(2):95–120

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Australian Research Council under the Discovery Grant DP200101303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro I. Maass.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

This paper is dedicated to Eduardo Sontag on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maass, A.I., Nešić, D., Postoyan, R. et al. On state estimation for nonlinear systems under random access wireless protocols. Math. Control Signals Syst. 35, 187–213 (2023). https://doi.org/10.1007/s00498-022-00337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-022-00337-y

Keywords

Navigation