Skip to main content
Log in

Exact controllability to the trajectories for parabolic PDEs with nonlocal nonlinearities

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This paper deals with the analysis of the internal control of a parabolic PDE with nonlinear diffusion, nonlocal in space. In our main result, we prove the local exact controllability to the trajectories with distributed controls, locally supported in space. The main ingredients of the proof are a compactness–uniqueness argument and Kakutani’s fixed-point theorem in a suitable functional setting. Some possible extensions and open problems concerning other nonlocal systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev VM, Tikhomorov VM, Formin SV (1987) Optimal control. Consultants Bureau, New York

    Book  Google Scholar 

  2. Chang NH, Chipot M (2003) On some model diffusion problems with a nonlocal lower order term. Chin Ann Math 24(B:2):147–166

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang NH, Chipot M (2003) Nonlinear nonlocal evolution problems. Rev R Acad Cien Serie A Mat (RACSAM) 97(3):393–415

    MathSciNet  MATH  Google Scholar 

  4. Clark HR, Fernández-Cara E, Limaco J, Medeiros LA (2013) Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities. Appl Math Comput 223:483–505

    MathSciNet  MATH  Google Scholar 

  5. Fabre C, Puel JP, Zuazua E (1995) Approximate controllability of the semilinear heat equation. Proc R Soc Edinb Sect 125A:31–61

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernández-Cara E, Lü Q, Zuazua E (2016) Null controllability of linear heat and wave equations with nonlocal spatial terms. SIAM J Control Optim 54(4):2009–2019

    Article  MathSciNet  MATH  Google Scholar 

  7. Fernández-Cara E, Zuazua E (2000) Null and approximate controllability for weakly blowing up semilinear heat equations. Ann Inst Henri Poincaré Anal Non linéaire 17(5):583–616

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández-Cara E, Zuazua E (2000) The cost of approximate controllability for heat equations: the linear case. Adv Differ Equ 5:465–514

    MathSciNet  MATH  Google Scholar 

  9. Fursikov AV, Imanuvilov OY (1996) Controllability of evolution equations. Lecture notes series, vol 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul

  10. Imanuvilov OY, Yamamoto M (2003) Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ Res Inst Math Sci 39(2):227–274

    Article  MathSciNet  MATH  Google Scholar 

  11. Imanuvilov OY (1995) Controllability of parabolic equations. Sb Math 186(6):879–900

    Article  MathSciNet  Google Scholar 

  12. Ladyzhenskaya OA, Solonnikov VA, Ural’ceva NN (1968) Linear and quasilinear equations of parabolic type. Translations of mathematical monographs, vol 23. AMS, Providence

    Book  Google Scholar 

  13. Liu Xu, Zhang Xu (2012) Local controllability of multidimensional quasi-linear parabolic equations. SIAM J Control Optim 50(4):2046–2064

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Límaco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by MINECO (Spain), Grant MTM2016-76990-P.

Appendix: proof of Lemma 2.2

Appendix: proof of Lemma 2.2

Let \(w \in Z\) be given, and let us set

$$\begin{aligned} \displaystyle \alpha (t):=a\Bigl (\int _\Omega w(x',t)\,\hbox {d}x'\Bigr ). \end{aligned}$$

Let us assume that \(\varphi \) satisfies

$$\begin{aligned} \left\{ \begin{array}{lllll} -\varphi _{t} - \alpha (t) \Delta \varphi = 0 &{}\quad \text{ in } &{} \, \,Q,\\ \varphi =0 &{}\quad \text{ on } &{}\,\, \Sigma ,\\ \varphi (x,T)=f(x) &{}\quad \text{ in } &{}\,\, \Omega . \end{array}\right. \end{aligned}$$

From the standard Carleman estimates for \(\varphi \), one has

$$\begin{aligned} \iint _Q e^{-C_0/(T-t)} |\varphi |^2\,\hbox {d}x\,\hbox {d}t \le \tilde{C}_0 \iint _{\omega \times (0,T)}e^{-2s\sigma } \xi ^{3}|\varphi |^2\,\hbox {d}x\,\hbox {d}t, \end{aligned}$$
(5.1)

where \(C_0\) only depends on \(\Omega \), \(\omega \), T, \(a_0\), \(a_1\). M and \(\Vert w\Vert _{Z}\) and \(\tilde{C}_0\) only depends on \(\Omega \), \(\omega \), \(a_0\), \(a_1\), M and \(\Vert w\Vert _{Z}\); see [7, 9]. Taking into account that

$$\begin{aligned} \varphi (x,t)=\sum _{j \ge 1} e^{-\lambda _j \int _t^T \alpha (s)\,\hbox {d}s} (f,\phi _j) \phi _j \end{aligned}$$

and

$$\begin{aligned} \Vert \varphi \Vert ^2 = \sum _{j \ge 1} e^{-2\lambda _j \int _t^T \alpha (s)\,\hbox {d}s} |(f,\phi _j)|^2, \end{aligned}$$

we see from (5.1) that

$$\begin{aligned} \int _0^T\sum _{j \ge 1} e^{-2\lambda _j \int _t^T \alpha (s)\,\hbox {d}s-C_0/(T-t)} |(f,\phi _j)|^2\,\hbox {d}t \le \tilde{C}_0 \iint _{\omega \times (0,T)}e^{-2s\sigma } \xi ^{3}|\varphi |^2\,\hbox {d}x\,\hbox {d}t, \end{aligned}$$

and consequently,

$$\begin{aligned} \sum _{j \ge 1} \left( \int _0^T e^{-2\lambda _j a_1(T-t)-C_0/(T-t)}\,\hbox {d}t\ \right) |(f,\phi _j)|^2 \le \tilde{C}_0 \iint _{\omega \times (0,T)} e^{-2s\sigma }\xi ^{3}|\varphi |^2\,\hbox {d}x\,\hbox {d}t. \end{aligned}$$

The asymptotic behavior of the integrals in the left hand side is well known. Indeed, one has

$$\begin{aligned} \int _0^T e^{-2\lambda a_1(T-t)-C_0/(T-t)}\hbox {d}t \thicksim \left( \dfrac{\pi ^2 C_0}{4(\lambda a_1)^3}\right) ^{1/4} e^{-4 \sqrt{C_0 a_1 \lambda }}, \,\,\, \text{ as }\,\, \lambda a_1\rightarrow \infty \end{aligned}$$

(see, for instance, [8]). Thus, there exists \(\tilde{C}_1\), again depending on \(\Omega \), \(\omega \), \(a_0\), \(a_1\), M and \(\Vert w\Vert _{Z}\), such that

$$\begin{aligned} \int _0^T e^{-2\lambda _j a_1(T-t)-C_0/(T-t)}\,\hbox {d}t \ge \tilde{C}_1 e^{-2 R_0 \sqrt{\lambda _j}}\,\,\,\ \forall \, j\ge 1. \end{aligned}$$

Obviously, this leads to (2.1) and ends the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Cara, E., Límaco, J., Nina-Huaman, D. et al. Exact controllability to the trajectories for parabolic PDEs with nonlocal nonlinearities. Math. Control Signals Syst. 31, 415–431 (2019). https://doi.org/10.1007/s00498-019-00244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-019-00244-9

Keywords

Mathematics Subject Classification

Navigation