Skip to main content
Log in

Explicit criteria for exponential stability of time-varying systems with infinite delay

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Time-varying differential systems with infinite delay are considered. Explicit criteria for global exponential stability of linear (nonlinear) systems are presented. Furthermore, an explicit robust stability bound for linear systems subject to time-varying perturbations is given. The exponential stability criteria for nonlinear systems are used to investigate exponential stability of equilibria of neural networks. Three examples are given to illustrate obtained results. To the best of our knowledge, the results of this paper are new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appleby JAD, Buckwar E (2010) A constructive comparison technique for determining the asymptotic behaviour of linear functional differential equations with unbounded delay. Differ Equ Dyn Syst 18:271-301

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouzahir H, You H, Yuan R (2011) Global Attractor for some partial functional differential equations with infinite delay. Funkc Ekvacio 54:139-156

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao J, Wang J (2004) Delay dependent robust stability of uncertain nonlinear systems with time delay. Appl Math Comput 154:289-297

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao J, Huang DS, Qu Y (2005) Global robust stability of delayed recurrent neural networks. Chaos Solitons Fractals 23:221-229

    Article  MathSciNet  MATH  Google Scholar 

  5. Corduneanu C, Lakshmikantham V (1980) Equations with unbounded delay: a survey. Nonlinear Anal 4:831-877

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui BT, Wu W (2008) Global exponential stability of Cohen-Grossberg neural networks with distributed delays. Neuro Comput 72:386-391

    MathSciNet  Google Scholar 

  7. Dieudonné J (1988) Foundations of modern analysis. Academic Press, New York

    MATH  Google Scholar 

  8. Driver RD (1962) Existence and stability of solutions of a delay differential system. Arch Ration Mech Anal 10:401-426

    Article  MathSciNet  MATH  Google Scholar 

  9. Erneux T (2009) Applied delay differential equations. Surveys and tutorials in the applied mathematical sciences, vol 3. Springer, Berlin

  10. Farina L, Rinaldi S (2000) Positive linear systems: theory and applications. Wiley, New York

    Book  MATH  Google Scholar 

  11. Haddad WM, Chellaboina V (2004) Stability theory for nonnegative and compartmental dynamical systems with time delay. Syst Control Lett 51:355-361

    Article  MathSciNet  MATH  Google Scholar 

  12. Haddad WM, Chellaboina V, Hui Q (2010) Nonnegative and compartmental dynamical systems. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  13. Hale JK, Kato J (1978) Phase space for retarded equations with infinite delay. Funkc Ekvacio 21:11-41

    MathSciNet  MATH  Google Scholar 

  14. Hino Y, Murakami S, Naito T (1991) Functional-differential equations with infinite delay. Lecture notes in mathematics, vol 1473. Springer, Berlin

  15. Hu G, Davison EJ (2003) Real stability radii of linear time-invariant time-delay systems. Syst Control Lett 50:209-219

    Article  MathSciNet  MATH  Google Scholar 

  16. Kato J (1978) Stability problem in functional differential equations with infinite delay. Funkc Ekvacio 21:63-80

    MathSciNet  MATH  Google Scholar 

  17. Kato J (1983) Asymptotic behavior in functional differential equations with infinite delay. Lect Notes Math 1017:300-312

    Article  MathSciNet  Google Scholar 

  18. Kuang Y (1993) Delay differential equations with applications in population dynamics. Mathematics in science and engineering, vol 191. Academic Press, New York

  19. Li H, Chen B, Zhou Q, Qian W (2009) Robust stability for uncertain delayed fuzzy hopfield neural networks with Markovian jumping parameters. IEEE Trans Syst Man Cybern Part B: Cybern 39:94-102

    Article  Google Scholar 

  20. Li H, Gao H, Shi P (2010) New passivity analysis for neural networks with discrete and distributed delays. IEEE Trans Neural Netw 21:1842-1847

    Article  Google Scholar 

  21. Martin A, Ruan S (2001) Predator-prey models with delay and prey harvesting. J Math Biol 43:247-267

    Article  MathSciNet  MATH  Google Scholar 

  22. Naito T (1976) On autonomous linear retarded equations in abstract phase for infinite retardations. J Differ Equ 21:297-315

    Article  MathSciNet  MATH  Google Scholar 

  23. Naito T (1979) On linear autonomous retarded equations in abstract phase for infinite delay. J Differ Equ 33:74-91

    Article  MathSciNet  MATH  Google Scholar 

  24. Ngoc PHA (2005) Strong stability radii of positive linear time-delay systems. Int J Robust Nonlinear Control 15:459-472

    Article  MathSciNet  Google Scholar 

  25. Ngoc PHA (2009) On positivity and stability of linear Volterra systems with delay. SIAM J Control Optim 48:1939-1960

    Article  MathSciNet  MATH  Google Scholar 

  26. Ngoc PHA (2011) On a class of positive linear differential equations with infinite delays. Syst Control Lett 60:1038-1044

    Article  MathSciNet  MATH  Google Scholar 

  27. Ngoc PHA (2012) On exponential stability of nonlinear differential systems with time-varying delay. Appl Math Lett 25:1208-1213

    Article  MathSciNet  MATH  Google Scholar 

  28. Ngoc PHA (2013) Stability of positive differential systems with delay. IEEE Trans Autom Control 58:203-209

    Article  MathSciNet  Google Scholar 

  29. Ngoc PHA (2013) Novel criteria for exponential stability of functional differential equations. Proc Am Math Soc 141:3083-3091

    Article  MathSciNet  MATH  Google Scholar 

  30. Ngoc PHA, Hieu LT (2013) New criteria for exponential stability of nonlinear difference systems with time-varying delay. Int J Control 86:1646-1651

    Article  MathSciNet  MATH  Google Scholar 

  31. Ngoc PHA (2014) Positivity and stability of linear functional differential equations with infinite delay. Mathematische Nachrichten 287:803-824

    Article  MathSciNet  MATH  Google Scholar 

  32. Ngoc PHA (2015) Novel criteria for exponential stability of nonlinear differential systems with delay. IEEE Trans Autom Control 60:485-490

    Article  MathSciNet  Google Scholar 

  33. Oliveira J (2011) Global stability of a Cohen-Grossberg neural network with both time-varying and continuous distributed delays. Nonlinear Anal Real World Appl 12:2861-2870

    Article  MathSciNet  MATH  Google Scholar 

  34. Pavlikov SV (2008) On the stability problem for functional differential equations with infinite delay. Russ Math 52:24-32

    Article  MathSciNet  MATH  Google Scholar 

  35. Rudin W (1976) Principles of mathematical analysis. McGraw-Hill Science/Engineering/Math, New York

    MATH  Google Scholar 

  36. Sadaka H, Shafai B, Sipahi R, Chen J (2007) An alternative characterization of robust stability and stability radius for linear time delay systems. In: Proceedings of the 46th IEEE conference on decision and control, pp 2112-2116

  37. Sawano K (1979) Exponential asymptotic stability for functional differential equations with infinite retardations. Tôhoku Math J 31:363-382

    Article  MathSciNet  MATH  Google Scholar 

  38. Sedova NO (2008) Development of the direct Lyapunov method for functional-differential equations with infinite delay. Math Notes 84:826-841

    Article  MathSciNet  MATH  Google Scholar 

  39. Shao J (2012) Global exponential stability of non-autonomous Nicholson-type delay systems. Nonlinear Anal Real World Appl 13:790-793

    Article  MathSciNet  MATH  Google Scholar 

  40. Smith Hal (2011) An introduction to delay differential equations with sciences applications to the life. Texts in applied mathematics, vol 57. Springer, New York

  41. Son NK, Hinrichsen D (1996) Robust stability of positive continuous-time systems. Numer Funct Anal Optim 17:649-659

    Article  MathSciNet  MATH  Google Scholar 

  42. Son NK, Ngoc PHA (1999) Robust stability of positive linear delay systems under affine parameter perturbations. Acta Mathematica Vietnamica 24:353-372

    MathSciNet  MATH  Google Scholar 

  43. Sun J, Li Wan (2005) Global exponential stability and periodic solutions of Cohen-Grossberg neural networks with continuously distributed delays. Physica D 208:1-20

    Article  MathSciNet  MATH  Google Scholar 

  44. Tan MC (2008) Asymptotic stability of nonlinear systems with unbounded delays. J Math Anal Appl 337:1010-1021

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu F, Hu S (2011) Attraction, stability and robustness for stochastic functional differential equations with infinite delay. Automatica 47:2224-2232

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu W, Cui BT, Lou X (2008) Global exponential stability of Cohen-Grossberg neural networks with distributed delays. Math Comput Model 47:868-873

    Article  MathSciNet  MATH  Google Scholar 

  47. Xia Y, Huang Z, Han M (2008) Existence and globally exponential stability of equilibrium for BAM neural networks with impulses. Chaos Solitons Fractals 37:588-597

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang Z, Zhu E, Xu Y, Tan Y (2010) Razumikhin-type theorems on exponential stability of stochastic functional differential equations with infinite delay. Acta Applicandae Mathematicae 111:219-231

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang Q, Wei X, Xu J (2003) Global exponential stability of Hopfield neural networks with continuously distributed delays. Phys Lett A 315:431-436

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang Q, Wei X, Xu J (2009) Global exponential stability for nonautonomous cellular neural networks with unbounded delays. Chaos Solitons Fractals 39:1144-1151

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Huu Anh Ngoc.

Additional information

This research is supported by Vietnam National University Ho Chi Minh City (VNU-HCM) under the Grant Number C2015-26-06.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoc, P.H.A., Tinh, C.T. Explicit criteria for exponential stability of time-varying systems with infinite delay. Math. Control Signals Syst. 28, 4 (2016). https://doi.org/10.1007/s00498-015-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-015-0159-9

Keywords

Navigation