Skip to main content

Advertisement

Log in

Sex allocation in gynodioecious Cyananthus delavayi differs between gender morphs and soil quality

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Key message

Sex allocation in Cyananthus delavayi.

Abstract

Gynodioecy, where females and hermaphrodites coexist in the same natural population, is particularly suitable for predicting the ecological pressures that drive the stability of gender polymorphism. Since females have a disadvantage in that they only contribute to the next generation via ovules, they should gain an advantage via other means, of which resource allocation is an important component. Thus, to study their sex allocation is very helpful to understand how the dimorphic sexual system is maintained in natural systems. We studied the sex allocation patterns and reproductive output of the gynodioecious Cyananthus delavayi in three populations with different soil qualities (organic matter, N, P and K). The hermaphroditic flowers and pistils were much larger than those of female individuals. Although both gender morphs invested similar biomass in the pistils, females allocated more of their resource pool to the seed production, while hermaphrodites allocated more to pollinator advertisement. The pollen production of hermaphrodites did not differ between populations, suggesting that pollen production by hermaphrodites was not limited by soil nutrients. Fruit set of females, but not hermaphrodites, decreased with declining soil quality, whereas seeds per fruit of both females and hermaphrodites were highest in poor soils. Overall, this study shows that females achieve greater reproductive success by allocating more of their resource pool to enhancing seed production, which should favor their presence in gynodioecious populations. The hermaphrodites achieve reproductive success from both pollen and seed production, and unnecessarily reduce their allocation to pollen production. Soil quality should explain, at least partially, the sexual allocation patterns. Furthermore, some of our findings contradict previous hypotheses, thus adding a new example to the body of research on plant sex allocation and the development of future theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso C, Herrera CM (2011) Back-and-forth hermaphroditism: phylogenetic context of reproductive system evolution in subdioecious Daphne laureola. Evol Dev 65:1680–1692

    Article  Google Scholar 

  • Arnan X, Escola A, Rodrigo A, Bosch J (2014) Female reproductive success in gynodioecious Thymus vulgaris: pollen versus nutrient limitation and pollinator foraging behaviour. Bot J Linnean Soc 175:395–408

    Article  Google Scholar 

  • Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate andes of central Chile. 1. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97

    Article  Google Scholar 

  • Ashman TL (1994) Reproductive allocation in hermaphrodite and female plants of Sidalcea oregana ssp.spicata (Malvaceae) using 4 currencies. Am J Bot 81:433–438

    Article  Google Scholar 

  • Ashman TL (1999) Determinants of sex allocation in a gynodioecious wild strawberry: implications for the evolution of dioecy and sexual dimorphism. J Evol Biol 12:648–661

    Article  Google Scholar 

  • Ashman TL (2006) The evolution of separate sexes: a focus on the ecological context. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 204–219

    Google Scholar 

  • Ashman TL, Stanton M (1991) Seasonal variation in pollination dynamics of sexually dimorphic Sidalcea oregana ssp. spicata (Malvaceae). Ecology 72:993–1003

    Article  Google Scholar 

  • Asikainen E, Mutikainen P (2005) Pollen and resource limitation in a gynodioecious species. Am J Bot 92:487–494

    Article  PubMed  Google Scholar 

  • Atlan A, Gouyon PH, Fournial T, Pomente D, Couvet D (1992) Sex allocation in a hermaphroditic plant - the case of gynodioecy in Thymus vulgaris L. J Evol Biol 5:189–203

    Article  Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc R Soc B Biol Sci 280:20130913. doi:10.1098/rspb.2013.0913

    Article  Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11:15–39

    Article  Google Scholar 

  • Bawa KS, Opler PA (1975) Dioecism in tropical tress. Evol Dev 29:167–179

    Article  CAS  Google Scholar 

  • Bell G (1985) On the functions of flowers. Prco R Soc Lond B 224:223–265

    Article  Google Scholar 

  • Brunet J, Charlesworth D (1995) Floral sex allocation in sequentially blooming plants. Evolution 49:70–79

    Article  PubMed  Google Scholar 

  • Case AL, Ashman TL (2005) Sex-specific physiology and its implications for the cost of reproduction. In: Reekie E, Bazzaz FA (eds) Reproductive allocation in plants. Elsevier Academic Press, UK, pp 126–154

    Google Scholar 

  • Case AL, Barrett SCH (2004) Environmental stress and the evolution of dioecy: Wurmbea dioica (Colchicaceae) in western Australia. Evol Ecol 18:145–164

    Article  Google Scholar 

  • Charlesworth D (1989) Allocation to male and female function in hermaphrodites, in sexually polymorphic populations. J Theor Biol 139:327–342

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Charlesworth D, Morgan MT (1991) Allocation of resources to sex functions in flowering plants. Trans R Soc B Biol Sci 332:91–102

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Chen JG, Niu Y, Yang Y, Sun H (2015) Sexual allocation in the gynodioecious species Cyananthus macrocalyx (Campanulaceae) at high elevations in the Sino-Himalaya Mountains. Alp Bot 126:49–57

    Article  Google Scholar 

  • Darwin CR (1877) The different forms of flowers on plants of the same species. John Murray, London

    Book  Google Scholar 

  • de Lima RDS, Sofiatti V, de Azevedo CAV, Cazetta JO, Júnior GSC (2015) Nutrient accumulation curves in fruits and nutrient export by seeds and hulls harvesting of physic nut (Jatropha curcas L.). Semin Cienc Agrar 35:3003–3014

    Article  Google Scholar 

  • Delph LF (1990a) Sex-differential resource allocation patterns in the subdioecious shrub Hebe subalpina. Ecology 71:1342–1351

    Article  Google Scholar 

  • Delph LF (1990b) Sex-ratio variation in the gynodioecious shrub Hebe strictissima (Scrophulariaceae). Evolution 44:134–142

    Article  PubMed  Google Scholar 

  • Delph LF (1996) Flower size dimorphism in plants with unisexual flowers. In: Lloyd DG, Barrett SCH (eds) Floral biology: studies on floral evolution in animal pollinated plants. Springer, New York, pp 217–237

    Chapter  Google Scholar 

  • Delph LF (2003) Sexual dimorphism in gender plasticity and its consequences for breeding system evolution. Evol Dev 5:34–39

    Article  PubMed  Google Scholar 

  • Delph LF (2009) Sex allocation: evolution to and from dioecy. Curr Biol 19:R249–R251

    Article  CAS  PubMed  Google Scholar 

  • Delph LF, Carroll SB (2001) Factors affecting relative seed fitness and female frequency in a gynodioecious species, Silene acaulis. Evol Ecol Res 3:487–505

    Google Scholar 

  • Delph LF, Lively CM (1992) Pollinator visitation, floral display, and nectar production of the sexual morphs of a gynodioecious shrub. Oikos 63:161–170

    Article  Google Scholar 

  • Delph LF, Lloyd DG (1991) Environmental and genetic-control of gender in the dimorphic shrub Hebe subalpina. Evolution 45:1957–1964

    Article  PubMed  Google Scholar 

  • Delph LF, Wolf DE (2005) Evolutionary consequences of gender plasticity in genetically dimorphic breeding systems. New Phytol 166:119–128

    Article  PubMed  Google Scholar 

  • Eckhart VM (1992) Resource compensation and the evolution of gynodioecy in Phacelia-Linearis (Hydrophyllaceae). Evolution 46:1313–1328

    Article  PubMed  Google Scholar 

  • Eckhart VM (1999) Sexual dimorphism in flowers and inflorescences. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, New York, pp 123–148

    Chapter  Google Scholar 

  • Garcia-Camacho R, Totland O (2009) Pollen limitation in the alpine: a meta- analysis. Arct Antarct Alp Res 41:103–111

    Article  Google Scholar 

  • Grindeland JM, Sletvold N, Ims RA (2005) Effects of floral display size and plant density on pollinator visitation rate in a natural population of Digitalis purpurea. Funct Ecol 19:383–390

    Article  Google Scholar 

  • Guo H, Mazer SJ, Du GZ (2010a) Geographic variation in primary sex allocation per flower within and among 12 species of Pedicularis (Orobanchaceae): Proportional male investment increases with elevation. Am J Bot 97:1334–1341

    Article  PubMed  Google Scholar 

  • Guo H, Mazer SJ, Du GZ (2010b) Geographic variation in seed mass within and among nine species of Pedicularis (Orobanchaceae): effects of elevation, plant size and seed number per fruit. J Ecol 98:1232–1242

    Article  Google Scholar 

  • Harder LD, Barrett SCH (2006) Ecology and evolution of flowers. Oxford University Press, New York

    Google Scholar 

  • Iwata T, Nagasaki O, Ishii HS, Ushimaru A (2012) Inflorescence architecture affects pollinator behaviour and mating success in Spiranthes sinensis (Orchidaceae). New Phytol 193:196–203

    Article  PubMed  Google Scholar 

  • Leigh A, Cosgrove MJ, Nicotra AB (2006) Reproductive allocation in a gender dimorphic shrub: anomalous female investment in Gynatrix pulchella? J Ecol 94:1261–1271

    Article  Google Scholar 

  • Liu JQ, Duan YW, Hao G, Ge XJ, Sun H (2014) Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J Syst Evol 52:241–249

    Article  Google Scholar 

  • Lloyd DG (1976) The transmission of genes via pollen and ovules in gynodioecious angiosperms. Theor Popul Biol 9:299–316

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Luo YB, Huang SQ (2012) Effects of soil moisture and floral herbivory on sexual expression in a gynodioecious orchid. J Syst Evol 50:454–459

    Article  Google Scholar 

  • Makino TT, Ohashi K, Sakai S (2007) How do floral display size and the density of surrounding flowers influence the likelihood of bumble bee revisitation to a plant? Funct Ecol 21:87–95

    Google Scholar 

  • McCauley DE, Brock MT (1998) Frequency-dependent fitness in Silene vulgaris, a gynodioecious plant. Evolution 52:30–36

    Article  PubMed  Google Scholar 

  • Medan D, Montaldo NH, Devoto M, Mantese A, Vasellati V, Roitman GG, Bartoloni NH (2002) Plant-pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arct Antarct Alp Res 34:233–241

    Article  Google Scholar 

  • Niu Y (2011) Reproductive ecology of gynodioecious Cyananthus delavayi (Campanulaceae). Dissertation (Chinese with english abstract), University of Chinese Academy of Sciences

  • Niu Y, Zhang ZQ, Liu CQ, Li ZM, Sun H (2015) A sexually dimorphic corolla appendage affects pollen removal and floral longevity in gynodioecious Cyananthus delavayi (Campanulaceae). PLoS ONE 10:e0117149

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell AH, Powell GVN (1987) Population-dynamics of male euglossine bees in amazonian forest fragments. Biotropica 19:176–179

    Article  Google Scholar 

  • Ramula S, Mutikainen P (2003) Sex allocation of females and hermaphrodites in the gynodioecious Geranium sylvaticum. Ann Bot 92:207–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596

    Article  PubMed  Google Scholar 

  • Sakai S (2000) Biased sex allocation in hermaphroditic plants. J Plant Res 113:335–342

    Article  Google Scholar 

  • Sakai AK, Weller SG, Chen ML, Chou S-Y, Tasanont C (1997) Evolution of gynodioecy and maintenance of females: the role of inbreeding depression, outcrossing rates, and resource allocation in Schiedea adamantis (Caryophyllaceae). Evolution 51:724–736

    Article  PubMed  Google Scholar 

  • Shykoff JA, Kolokotronis SO, Collin CL, López-Villavicencio M (2003) Effects of male sterility on reproductive traits in gynodioecious plants: a meta- analysis. Oecologia 135:1–9

    Article  PubMed  Google Scholar 

  • Stakeliene V, Loziene K (2014) Gynodioecy in Thymus pulegioides L., T. serpyllum L., and their hybrid T. × oblongifolius Opiz (Lamiaceae): Flower size dimorphism, female frequency, and effect of environmental factors. Plant Biosyst 148:49–57

    Article  Google Scholar 

  • Williams CF, Kuchenreuther MA, Drew A (2000) Floral dimorphism, pollination, and self-fertilization in gynodioecious Geranium richardsonii (Geraniaceae). Am J Bot 87:661–669

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Li ZM, Sun H (2014) Seed plants of the alpine subnival belt from the hengduan mountains, SW China. Science Press, Beijing

    Google Scholar 

  • Yu TR, Wang ZQ (1988) Soil analytical chemistry. Science Press, Beijing

    Google Scholar 

  • Zhang RZ, Zheng D, Yang QY, Liu YH (1997) Physical geography of Hengduan mountains. Science Press, Beijing

    Google Scholar 

Download references

Acknowledgements

We thank Yi XJ and Meng JX for their assistance in data collection, and Joelle Hoggan and Jane Marczewski for editing the English of this paper. Prof. Spencer C.H. Barrett gave many useful comments on the first version of this manuscript. This work was supported by grants from the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB03030112 to H Sun) and the Natural Science Foundation of China (NSFC) (Grant No. 31500185 to JG Chen, U1136601 to H Sun, 31200183 to Y Niu, 31470321 to Y Yang and 31360049 to ZM Li).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yang or Hang Sun.

Additional information

Communicated by Dolf Weijers.

Appendix

Appendix

See Table 4.

Table 4 Plant size (estimated as above-ground vegetative mass, Guo et al. 2010a, b), varied by population, but within populations, females and hermaphrodits did not differ

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Niu, Y., Li, Z. et al. Sex allocation in gynodioecious Cyananthus delavayi differs between gender morphs and soil quality. Plant Reprod 30, 107–117 (2017). https://doi.org/10.1007/s00497-017-0303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-017-0303-4

Keywords

Navigation