Skip to main content
Log in

The Chromatic Number of the Product of 5-Chromatic Graphs can be 4

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We show that for any integers \(m_1, m_2 \ge 5\), there exist graphs GH such that \(\chi (G) = m_1\), \(\chi (H) = m_2\) and \(\chi (G \times H) < \min \{m_1, m_2\}\). In particular for \(m_1 = m_2 = 5\), this settles the last remaining open case of Hedetniemi’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. I am indebted to Gábor Tardos for a suggestion that led to a simplification of this Lemma and its proof.

References

  1. Hedetniemi, S.: Homomorphisms of graphs and automata, Technical Report 03105-44-T, University of Michigan. (1966)

  2. El-Zahar, M., Sauer, N.: The chromatic number of the product of two \(4\)-chromatic graphs is \(4\). Combinatorica 5, 121–126 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baum, S., Stiebitz, M.: Coloring of graphs without short odd paths between vertices of the same color class. unpublished manuscript (2005)

  4. Gyárfás, A., Jensen, T., Stiebitz, M.: On graphs with strongly independent color-classes. J. Graph. Theory 46, 1–14 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shitov, Y.: Counterexamples to Hedetniemi’s conjecture. Ann. Math. 190(2), 663–667 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hajiabolhassan, H.: On colorings of graph powers. Discrete Math. 309, 4299–4305 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hajnal, A.: The chromatic number of the product of two \(\aleph _1\)-chromatic graphs can be countable. Combinatorica 5, 137–139 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25, 319–324 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Poljak, S.: Coloring digraphs by iterated antichains. Comment. Math. Univ. Carolin. 32, 209–212 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Simonyi, G., Tardos, G.: Local chromatic number. Ky Fan’s Theorem and circular colorings. Combinatorica 26, 587–626 (2006)

  11. Tardif, C.: The chromatic number of the product of 14-chromatic graphs can be 13. Combinatorica 42, 301–308 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wrochna, M.: On inverse powers of graphs and topological implications of Hedetniemi’s conjecture. J. Combin. Theory J. Combin. Theory Ser. B 139, 267–295 (2019)

  13. Wrochna, M.: Smaller counterexamples to Hedetniemi’s conjecture, arXiv:2012.13558 [math.CO]

  14. Zhu, X.: A survey on Hedetniemi’s conjecture. Taiwanese J. Math. 2, 1–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, X.: A note on the Poljak-R"odl function. Electron. J. Combin. 27, 3.2-4 (2020)

  16. Zhu, X.: Relatively small counterexamples to Hedetniemi’s conjecture. J. Combin. Theory Ser. B 146, 141–150 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Tardif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tardif, C. The Chromatic Number of the Product of 5-Chromatic Graphs can be 4. Combinatorica 43, 1067–1073 (2023). https://doi.org/10.1007/s00493-023-00047-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00047-2

Keywords

Mathematics Subject Classification

Navigation