Skip to main content
Log in

Covering Graphs by Monochromatic Trees and Helly-Type Results for Hypergraphs

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given r-edge-coloured graph G? These problems were introduced in the 1960s and were intensively studied by various researchers over the last 50 years. In this paper, we establish a connection between this problem and the following natural Helly-type question in hypergraphs. Roughly speaking, this question asks for the maximum number of vertices needed to cover all the edges of a hypergraph H if it is known that any collection of a few edges of H has a small cover. We obtain quite accurate bounds for the hypergraph problem and use them to give some unexpected answers to several questions about covering graphs by monochromatic trees raised and studied by Bal and DeBiasio, Kohayakawa, Mota and Schacht, Lang and Lo, and Cirão, Letzter and Sahasrabudhe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abu-Khazneh, J. Barát, A. Pokrovskiy and T. Szabó: A family of extremal hypergraphs for Ryser’s conjecture, J. Combin. Theory Ser. A 161 (2019), 164–177.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Abu-Khazneh and A. Pokrovskiy: Intersecting extremal constructions in Ryser’s conjecture for r-partite hypergraphs, J. Combin. Math. Combin. Comput. 103 (2017), 81–104.

    MathSciNet  MATH  Google Scholar 

  3. R. Aharoni: Ryser’s conjecture for tripartite 3-graphs, Combinatorica 21 (2001), 1–4.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Aharoni, J. Barát and I. M. Wanless: Multipartite hypergraphs achieving equality in Ryser’s conjecture, Graphs Combin. 32 (2016), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Alon: An extremal problem for sets with applications to graph theory, J. Combin. Theory Ser. A 40 (1985), 82–89.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Alon and J. H. Spencer: The probabilistic method, fourth ed., Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016.

    MATH  Google Scholar 

  7. D. Bal and L. DeBiasio: Partitioning random graphs into monochromatic components, Electron. J. Combin. 24 (2017), P1.18.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Bennett, L. DeBiasio, A. Dudek and S. English: Large monochromatic components and long monochromatic cycles in random hypergraphs, European J. Combin. 76 (2019), 123–137.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Bollobás: On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965), 447–452.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Bollobás: Combinatorics: set systems, hypergraphs, families of vectors, and combinatorial probability, Cambridge University Press, 1986.

  11. D. Conlon and W. T. Gowers: Combinatorial theorems in sparse random sets, Ann. of Math. 2 (2016), 367–454.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Danzer, B. Grünbaum and V. Klee: Helly’s theorem and its relatives, in: Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 101–180, 1963.

  13. P. Erdős, D. G. Fon-Der-Flaass, A. V. Kostochka and Zs. Tuza: Small transversals in uniform hypergraphs, Siberian Advances in Math. 2 (1992), 82–88.

    MathSciNet  MATH  Google Scholar 

  14. P. Erdős, A. Gyárfás and L. Pyber: Vertex coverings by monochromatic cycles and trees, J. Combin. Theory Ser. B 51 (1991), 90–95.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Erdős, A. Hajnal and J. W. Moon: A problem in graph theory, Amer. Math. Monthly 71 (1964), 1107–1110.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Erdős, A. Hajnal and Zs. Tuza: Local constraints ensuring small representing sets, J. Combin. Theory, Ser. A 58 (1991), 78–84.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. G. Fon-Der-Flaass, A. V. Kostochka and D. R. Woodall: Transversals in uniform hypergraphs with property (7,2), Discrete Math. 207 (1999), 277–284.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Francetić, S. Herke, B. D. McKay and I. M. Wanless: On Ryser’s conjecture for linear intersecting multipartite hypergraphs, European J. Combin. 61 (2017), 91–105.

    Article  MathSciNet  MATH  Google Scholar 

  19. Z. Füredi: Matchings and covers in hypergraphs, Graphs Combin. 4 (1988), 115–206.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Gerencsér and A. Gyárfás: On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 167–170.

    MathSciNet  MATH  Google Scholar 

  21. A. Girão, S. Letzter and J. Sahasrabudhe: Partitioning a graph into monochromatic connected subgraphs, J. Graph Theory 91 (2019), 353–364.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Gyárfás: Covering complete graphs by monochromatic paths, in: Irregularities of partitions (Fertőd, 1986), Algorithms Combin. Study Res. Texts, vol. 8, Springer, Berlin, 89–91, 1989.

    Google Scholar 

  23. A. Gyárfás: Vertex covers by monochromatic pieces-a survey of results and problems, Discrete Mathematics 339 (2016), 1970–1977.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Gyárfás, M. Ruszinkó, G. N. Sárközy and E. Szemerédi: An improved bound for the monochromatic cycle partition number, J. Combin. Theory Ser. B 96 (2006), 855–873.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. E. Haxell and A. D. Scott: On Ryser’s conjecture, Electron. J. Combin. 19 (2012), P23.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. E. Haxell and A. D. Scott: A note on intersecting hypergraphs with large cover number, Electron. J. Combin. 24 (2017), P3.26.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Helly: Über mengen konvexer körper mit gemeinschaftlichen punkte., Jahresbericht der Deutschen Mathematiker-Vereinigung 32 (1923), 175–176.

    MATH  Google Scholar 

  28. J. R. Henderson: Permutation decomposition of (0, 1)-matrices and decomposition transversals, Ph.D. thesis, California Institute of Technology, 1971.

  29. Y. Kohayakawa, G. O. Mota and M. Schacht: Monochromatic trees in random graphs, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1–18, 2018.

  30. D. Korándi, R. Lang, S. Letzter and A. Pokrovskiy: Minimum degree conditions for monochromatic cycle partitioning, J. Combin. Theory Ser. B 146 (2021), 96–123.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Korandi, F. Mousset, R. Nenadov, N. Skoric and B. Sudakov: Monochromatic cycle covers in random graphs, Random Structures Algorithms 53 (2018), 667–691.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Kostochka: Transversals in uniform hypergraphs with property (p, 2), Combinatorica 22 (2002), 275–285.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Lang and A. Lo: Monochromatic cycle partitions in random graphs, Comb. Prob. Comput. 30 (2021), 136–152.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Lehel: τ-critical hypergraphs and the Helly property, in: Combinatorial mathematics (Marseille-Luminy, 1981), North-Holland Math. Stud., vol. 75, North-Holland, Amsterdam, 413–418, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Lovász: On minimax theorems of combinatorics, Mat. Lapok 26 (1975), 209–264 (1978).

    MathSciNet  MATH  Google Scholar 

  36. L. Lovász: On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975), 383–390.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Lovász: Combinatorial problems and exercises, second ed., North-Holland Publishing Co., Amsterdam, 1993.

    MATH  Google Scholar 

  38. G. Moshkovitz and A. Shapira: Exact bounds for some hypergraph saturation problems, J. Combin. Theory Ser. B 111 (2015), 242–248.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Pokrovskiy: Partitioning edge-coloured complete graphs into monochromatic cycles and paths, J. Combin. Theory Ser. B 106 (2014), 70–97.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Schacht: Extremal results for random discrete structures, Ann. of Math. 2 (2016), 333–365.

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Tuza: On the order of vertex sets meeting all edges of a 3-partite hypergraph, in: Proceedings of the First Catania International Combinatorial Conference on Graphs, Steiner Systems, and their Applications, Vol. 1 (Catania, 1986), vol. 24 A, 59–63, 1987.

Download references

Acknowledgements

We thank Louis DeBiasio and Tuan Tran for helpful comments on an earlier version of this manuscript. We would like to thank the anonymous referees for their careful reading of the paper and many useful suggestions. In particular, we are grateful for a suggestion on how to rewrite the proof of Lemma 4.3 to make it easier to follow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Sudakov.

Additional information

Research supported in part by SNSF grants 200020-162884 and 200021-175977.

Research supported in part by SNSF grant 200021_196965.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucić, M., Korándi, D. & Sudakov, B. Covering Graphs by Monochromatic Trees and Helly-Type Results for Hypergraphs. Combinatorica 41, 319–352 (2021). https://doi.org/10.1007/s00493-020-4292-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-020-4292-9

Mathematics Subject Classification (2010)

Navigation