Skip to main content
Log in

The minimum number of disjoint pairs in set systems and related problems

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Let F be a set system on [n] with all sets having k elements and every pair of sets intersecting. The celebrated theorem of Erdős, Ko and Rado from 1961 says that, provided n ≥ 2k, any such system has size at most \((_{k - 1}^{n - 1})\). A natural question, which was asked by Ahlswede in 1980, is how many disjoint pairs must appear in a set system of larger size. Except for the case k = 2, solved by Ahlswede and Katona, this problem has remained open for the last three decades.

In this paper, we determine the minimum number of disjoint pairs in small k-uniform families, thus confirming a conjecture of Bollobás and Leader in these cases. Moreover, we obtain similar results for two well-known extensions of the Erdős-Ko-Rado Theorem, determining the minimum number of matchings of size q and the minimum number of t-disjoint pairs that appear in set systems larger than the corresponding extremal bounds. In the latter case, this provides a partial solution to a problem of Kleitman and West.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ahlswede: Simple hypergraphs with maximal number of adjacent pairs of edges, J. Combinatorial Theory (B) 28 (1980), 164–167.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Ahlswede and N. Cai: A counterexample to Kleitman's conjecture concerning an edge-isoperimetric problem, Combinatorics, Probability and Computing 8 (1999), 301–305.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Ahlswede and N. Cai: Appendix: on edge-isoperimetric theorems for uniform hypergraphs, General Theory of Information Transfer and Combinatorics, Springer Berlin Heidelberg (2006), 979–1005.

    Chapter  Google Scholar 

  4. R. Ahlswede and G. O. H. Katona: Graphs with maximal number of adjacent pairs of edges, Acta Mathematica Hungarica 32 (1978), 97–120.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Ahlswede and L. H. Khachatrian: The complete intersection theorem for systems of nite sets, European Journal of Combinatorics 18 (1997), 125–136.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Anderson: Combinatorics of Finite Sets, Courier Dover Publications, 1987.

    Google Scholar 

  7. B. Bollobás and I. Leader: Set systems with few disjoint pairs, Combinatorica 23 (2003), 559–570.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. R. K. Chung, Z. Füredi, R. L. Graham and P. Seymour: On induced subgraphs of the cube, J. Combinatorial Theory (A) 49 (1988), 180–187.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Das, W. Gan and B. Sudakov: Sperner's theorem and a problem of Erdos, Katona and Kleitman, Combinatorics, Probability and Computing 24 (2015), 585–608.

    Article  MathSciNet  Google Scholar 

  10. A. P. Dove, J. R. Griggs, R. J. Kang and J. S. Sereni: Supersaturation in the Boolean lattice, Integers 14A (2014), #A4.

    MathSciNet  MATH  Google Scholar 

  11. P. Erdős: On a theorem of Rademacher-Turan, Illinois Journal of Math 6 (1962), 122–127.

    MathSciNet  MATH  Google Scholar 

  12. P. Erdős: On the number of complete subgraphs contained in certain graphs, Magy. Tud. Akad. Mat. Kut. Int. Közl. 7 (1962), 459–474.

    MathSciNet  MATH  Google Scholar 

  13. P. Erdős: A problem on independent r-tuples, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 93–95.

    MathSciNet  MATH  Google Scholar 

  14. P. Erdős, C. Ko and R. Rado: Intersection theorems for systems of finite sets, The Quarterly Journal of Mathematics 12 (1961), 313–320.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Frankl: On the minimum number of disjoint pairs in a family of finite sets, J. Combinatorial Theory (A) 22 (1977), 249–251.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Frankl: Improved bounds for Erdős' Matching Conjecture, J. Combinatorial Theory (A) 120 (2013), 1068–1072.

    Article  MATH  Google Scholar 

  17. P. Frankl, V. Rödl and A. Rucinski: On the maximum number of edges in a triple system not containing a disjoint family of a given size, Combinatorics, Probability and Computing 21 (2012), 141–148.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Gerbner, N. Lemons, C. Palmer, B. Patkós and V. Szécsi: Almost intersecting families of sets, SIAM Journal of Discrete Math. 26 (2012), 1657–1669.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Huang, P. Loh and B. Sudakov: The size of a hypergraph and its matching number, Combinatorics, Probability and Computing 21 (2012), 442–450.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. O. H. Katona, G. Y. Katona and Zs. Katona: Most probably intersecting families of subsets, Combinatorics, Probability and Computing 21 (2012), 219–227.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Luczak and K. Mieczkowska: On Erdős' extremal problem on matchings in hypergraphs, J. Combinatorial Theory (A) 124 (2014), 178–194

    Article  MATH  Google Scholar 

  22. W. Mantel: Problem 28, Winkundige Opgaven 10 (1907), 60–61.

    Google Scholar 

  23. S. Poljak and Zs. Tuza: Maximum bipartite subgraphs of Kneser graphs, Graphs and Combinatorics 3 (1987), 191–199.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. M. Wilson: The exact bound on the Erdős-Ko-Rado Theorem, Combinatorica 4 (1984), 247–257.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Sudakov.

Additional information

Research supported in part by NSF grant DMS-1101185, by AFOSR MURI grant FA9550-10-1-0569 and by a USA-Israel BSF grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Gan, W. & Sudakov, B. The minimum number of disjoint pairs in set systems and related problems. Combinatorica 36, 623–660 (2016). https://doi.org/10.1007/s00493-014-3133-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-014-3133-0

Mathematics Subject Classification (2010)

Navigation