Skip to main content
Log in

Analysis of thermal discomfort associated with synoptic conditions in the city of Pelotas, southernmost region of Brazil

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Here, we evaluated the influence of outdoor environmental conditions (synoptic weather conditions) on human thermal discomfort in the five macro-regions of Pelotas city, located in the southernmost region of Brazil. To do this, meteorological sensors (HOBO MX2301A) were installed outside the residences to measure the air temperature, dew point temperature, and relative humidity between 18 January and 20 August 2019. Two well-established simplified biometeorological indices were examined seasonally: (i) humidex for the summer months and (ii) effective temperature as a function of wind for the autumn and winter months. Our findings showed seasonal differences related to human thermal discomfort and outdoor environmental conditions. The thermal discomfort was highest in the afternoons during the summer months and at night during the winter months. The seasonal variation in human thermal discomfort was highly associated with the meteorological conditions. In summer, the presence of the South Atlantic Subtropical Anticyclone (SASA) contributed to heat stress. The SASA combined with the continent’s low humidity contributed to the perceived sensation of thermal discomfort. In the winter, thermal discomfort was associated with the decrease in air humidity caused by high atmospheric pressure systems, which led to a decrease in both air temperature and air moisture content. Our findings suggest that a better understanding of the complex interplay between outdoor environmental factors and human thermal comfort is needed in order to mitigate the negative effects of thermal discomfort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Adapted from

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bretanha SSF, Kobiyama M (2016) Estudo do clima no Município de Pelotas - RS. Revista Geonorte 7(27):30–49

    Google Scholar 

  • Cavalcanti IFA, Ferreira NJ, Silva MGAJ, Silva Dias MAF (2009) Tempo e clima no Brasil. Oficina de Textos, São Paulo, p 463

  • Chen TC, Yen MC (1997) Interdecadal variation of the southern hemisphere circulation. J Clim 10:805–812

    Article  ADS  Google Scholar 

  • Cissé G, McLeman R, Adams H, et al (2022) Health, wellbeing, and the changing structure of communities. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.) ]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 1041–1170 https://doi.org/10.1017/9781009325844.009

  • Collischonn E, De Mattos GP (2011) Classificação de ambientes termicamente homogêneos para estudos de clima na camada do dossel urbano–metodologia e aplicação à cidade de Pelotas/RS. Revista Brasileira de Climatologia 9

  • Collischonn E, De Mattos GP (2012) Aplicação de metodologia de classificação de ambientes termicamente homogêneos para estudos de clima urbano em sistema de informações geográficas. Revista Geonorte Edição Especial 2(4):1322–1334

    Google Scholar 

  • Collischonn E, Ferreira CVO (2015) O fator de visão do céu e sua influência sobre as características térmico-higrométricas intraurbanas em Pelotas/RS, Brasil. Geographia Meridionalis 1(1):160–178

    Article  Google Scholar 

  • Da Silva IR, Nedel AS, Marques JRQ, Nolasco LR Jr (2019) Excess of children’s outpatient consultations due to asthma and bronchitis and the association between meteorological variables in Canoas City, southern Brazil. Int J Biometeorol 63(11):1517–1524. https://doi.org/10.1007/s00484-018-1650-z

    Article  PubMed  Google Scholar 

  • Fagundes F, Bastos I, Reboita M, Escobar G (2021) Análise de um Episódio de Baixa Térmica do Noroeste da Argentina. Revista Brasileira de Geografia Física 14:094. https://doi.org/10.26848/rbgf.v14.1.p094-105

    Article  Google Scholar 

  • Fanger PO (1970) Thermal comfort: analysis and applications in environmental engineering. New York: McGraw Hill Book Company 244 https://doi.org/10.1177/146642407209200337

  • Freitas RAP, Casagrande F, Lindemann DS et al (2019) The Storm Tracks response to changes in atmospheric greenhouse gas concentration at the south of Brazil and Southwest Atlantic Ocean. Atmos Clim Sci 9(4):545–557

    Google Scholar 

  • Friendly M (2002) Corrgrams: exploratory displays for correlation matrices. Am Stat 56(4):316–324

    Article  MathSciNet  Google Scholar 

  • García MC (2019) Thermal differences, comfort/discomfort and humidex summer climate in Mar del Plata, Argentina. In: Henríquez, C., Romero, H. (eds) Urban Climates in Latin America. Springer, Cham https://doi.org/10.1007/978-3-319-97013-4_5

  • Giles DB, Balafouts C, Maheras P (1990) too hot for comfort: the heatwaves in Greece in 1987 and 1988. Int J Biometeorol 34:98–104. https://doi.org/10.1007/BF01093455

    Article  CAS  PubMed  Google Scholar 

  • Gobo JPA, Galvani E (2012) Application of the Wind Chill Index (WCI) in thermal comfort studies for the state of Rio Grande do Sul. Revista Geonorte Edição Especial 2(1):403–413

    Google Scholar 

  • Gosling SN (2014) New insights into biometeorology. Int J Biometeorol 58:101–102. https://doi.org/10.1007/s00484-014-0793-9

    Article  PubMed  Google Scholar 

  • Grimm AM (2009) Clima da Região Sul do Brasil. In: Cavalcanti IFA, Nelson JF, Silva MGAJ, Silva Dias MAF (eds) Tempo e Clima no Brasil. Oficina de textos, pp 259–274

  • Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  ADS  Google Scholar 

  • Hoppe PR (1999) The physiological equivalent temperature: a universal index for the assessment of the thermal environment. Int J Biometeorol 43:71–75. https://doi.org/10.1007/s004840050118

    Article  CAS  PubMed  Google Scholar 

  • IBGE – Instituto Brasileiro de Geografia e Estatística. https://www.ibge.gov.br/ Accessed 15 August 2022

  • International Society Biometeorology. Definition and classification of biometeorology. http://biometeorology.org. Accessed 25 June 2021

  • Krüger EL, Nedel AS, Gomes ACS, Lucio PS (2023) Analyzing the relationship between air temperature and respiratory morbidity in children and the elderly in Porto Alegre, Brazil, before and during the COVID-19 pandemic. Int J Biometeorol 67:1461–1475. https://doi.org/10.1007/s00484-023-02516-1

    Article  PubMed  Google Scholar 

  • Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728. https://doi.org/10.1007/s00382-006-0110-3

  • Mächel H, Kapala A, Flohn H (1998) Behaviour of the centres of action above the Atlantic since 1881. Part I: Characteristics of seasonal and interannual variability. Int J Climatol 18:1–22. https://doi.org/10.1002/(SICI)1097-0088(199801)18:1%3c1::AID-JOC225%3e3.0.CO;2-A

    Article  Google Scholar 

  • Marengo JA, Soares WR, Ambrizzi T (2009) Jato de baixos níveis ao longo dos Andes. In: Tempo e clima no Brasil. Oficina de Textos, São Paulo

  • Masterton J, Richardson FA (1979) Humidex: a method of quantifying human discomfort. Environment Canada. Atmospheric Environment Service, Downsview, Ontario

  • Missenard A (1937) L’Homme at lê climat. Plon, Paris, p 1937

    Google Scholar 

  • Missenard A (1948) Equivalence thermique des ambiances, équivalences de passage, équivalence de sé jours. Chaleur et Industrie, No. 276:159–198

  • Monteiro LM, Alucci MP (2009) Territorios y espacios urbanos sustentables: confort ambiental en espacios abiertos. Ambiente Construído 3:1–26. https://doi.org/10.29097/26191709.301

    Article  Google Scholar 

  • Morabito M, Crisci A, Grifoni D, Orlandini S, Cecchi L, Bacci L, Modesti PA, Gensini GF, Maracchi G (2006) Winter air-mass-based synoptic climatological approach and hospital admissions for myocardial infarction in Florence, Italy. Environ Res 102:52–60

    Article  CAS  PubMed  Google Scholar 

  • Müller GV et al (2003) Surface circulation associated with frost in the wet Pampas. Int J Climatol: A Journal of the Royal Meteorological Society 23(8):943–961

    Article  Google Scholar 

  • Müller GV, Repinaldo CR, Araneo DC (2018) Extreme cold events in South America analyzed from a GFDL model perspective: comparison between CMIP3 and CMIP5 climate scenarios. Theoret Appl Climatol 134(1–2):453–466

    Article  ADS  Google Scholar 

  • Nedel AS (2008) Meteorological conditions favorable to the occurrence of respiratory diseases in children in the City of São Paulo Thesis. Geophysics and Atmospheric Sciences of São Paulo, University of São Paulo, Institute of Astronomy

    Google Scholar 

  • Nedel AS, Alonso MF, Freitas RAP et al (2021) Analysis of indoor human thermal comfort in Pelotas municipality, extreme southern Brazil. Int J Biometeorol 65:419–428. https://doi.org/10.1007/s00484-020-02015-7

  • Nedel AS, Gonçalves FLT, Cardoso MRA et al (2022) Weather events and respiratory diseases in children: case studies in the metropolitan region of São Paulo, Brazil. Conjecturas, 22 (2):687–708. https://conjecturas.org/index.php/edico doi: https://doi.org/10.53660/CONJ-731

  • Nick LM, Nedel AS, Alonso MF, Marques JQ, Freitas RAP (2022) Relationship between meteorological variables and pneumonia in children in the Metropolitan Region of Porto Alegre, Brazil. Int J Biometeorol 66:2301–2308. https://doi.org/10.1007/s00484-022-02357-4

    Article  PubMed  Google Scholar 

  • Nimer E et al (1977) Clima. Geografia Do Brasil 4:35–58

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  ADS  Google Scholar 

  • Pelotas City Hall (2023) https://www.pelotas.com.br/. Accessed 10 Nov 2023

  • Pezzi LP, Souza RB, Acevedo O, et al (2009) Multiyear measurements of the oceanic and atmospheric boundary layers at the Brazil-Malvinas confluence region. J Geophys Res 114. https://doi.org/10.1029/2008JD011379

  • Reboita M, Ambrizzi T, Silva B et al (2019) The South Atlantic subtropical anticyclone: present and future climate. Front Earth Sci 7:1–8. https://doi.org/10.3389/feart.2019.00008

    Article  ADS  Google Scholar 

  • Seluchi ME, Saulo AC (2012) Baixa do Noroeste Argentino e Baixa do Chaco: caracterísitcas, diferenças e semelhanças. Revista Brasileira De Meteorologia 27(1):49–60. https://doi.org/10.1590/S0102-77862012000100006

    Article  Google Scholar 

  • StathopoulosT WUH (2004) Zacharias J (2004) Outdoor human comfort in an urban climate. Build Environ 39(3):297–305

    Article  Google Scholar 

  • Steadman RG (1979) The assessment of sultriness. Part I: a temperature- Humidity index based on human physiology and clothing science. J Appl Meteorol 18:861–873. https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2

    Article  Google Scholar 

  • Stewart ID, Oke TR (2009) Classifying urban climate field sites by “local climate zones” the case of Nagano, Japan. The seventh International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan

  • Suping Z, Guanglin M, Yanwen WJIL (1992) Study of the relationships between weather conditions and the marathon race, and of meteorotropic effects on distance runners. Int J Biometeorol 36:63–68. https://doi.org/10.1007/BF01208915

    Article  Google Scholar 

  • Wang Q, Gao C, Wang H, Lang L, Yue T, Lin H (2013) Ischemic Stroke Hospital Admission Associated with Ambient Temperature in Jinan, China. Plos One 8(11):e80381. https://doi.org/10.1371/journal.pone.0080381

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ynoue RY, Ambrizzi T, Reboita MS, da Silva GAM (2017) Meteorologia: noções básicas. Oficina de Textos, São Paulo

Download references

Acknowledgements

The authors express gratitude to the Brazilian National Council for Scientific and Technological Development (CNPq) for funding and support through the call Universal MCTI/CNPq No. 01/2016. Special thanks are extended to the entire team and third parties involved in the COORTE project of the Epidemiological Research Center of the Federal University of Pelotas (UFPEL). Additionally, the authors acknowledge the partial support of PRPPG/UFPel and CAPES in the publication of this article. A heartfelt acknowledgment is also extended to meteorologist Dr. Henrique Fuchs Bueno Repinaldo for his valuable contributions to this research. These acknowledgments reflect the various sources of support that have significantly contributed to the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose Ane Pereira de Freitas.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Trassante, F., de Freitas, R.A.P., Nedel, A.S. et al. Analysis of thermal discomfort associated with synoptic conditions in the city of Pelotas, southernmost region of Brazil. Int J Biometeorol 68, 463–477 (2024). https://doi.org/10.1007/s00484-023-02604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-023-02604-2

Keywords

Navigation