Skip to main content
Log in

Impairment in behavioral sedation in rats during periods of elevated global geomagnetic activity

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The influence of the geomagnetic environment on the human organism and other biological entities has been a topic of intense scientific investigation. A large and growing body of evidence has linked elevated geomagnetic activity with effects on an array of neurological, immunological, cardiovascular, and psychological outcomes. For example, elevations in the rates of epileptic seizures, suicides, aggressive behavior, sleep disturbances, and sudden unexpected death from cardiac pathologies have been reported to occur more frequently on days associated with increased geomagnetic activity. Additional evidence also suggests that geomagnetic conditions might have an impact on the biological actions of specific drugs classes that have important implications for pain management, sedation, and seizure control. The present study set out to determine if periods of enhanced geomagnetic activity could influence the induction of behavioral sedation by pentobarbital in rodents undergoing a routine surgical procedure. The surgical records of 250 subjects were retrospectively analyzed, and the occurrence of complete behavioral sedation (e.g., loss of righting reflex, lack of nociceptive response to tail pinch, absence of corneal and conjunctive reflexes) was noted. We found a significant correlation between periods of increased geomagnetic activity and the number of non-responsive surgical patients (i.e., patients still demonstrating behavioral responsiveness after treatment with pentobarbital). These findings provide evidence for the first time that the potential efficacy of some surgical anesthetic compounds might be reduced on days associated with increased geomagnetic activity. Potential mechanisms are presented, and the broad implications of these findings to phenomena such as surgical awareness are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aceto H Jr, Tobias CA, Silver IL (1970) Some studies on the biological effects of magnetic fields. IEEE Trans Magn 6:368–373

    Article  Google Scholar 

  • Adey WR (1981) Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 61:435–514. https://doi.org/10.1152/physrev.1981.61.2.435

    Article  CAS  Google Scholar 

  • Bardasano JL, Cos S, Picazo ML (1989) Numerical variation in synaptic ribbons of rat pinealocytes under magnetic storm conditions and on calm days. J Hirnforsch 30:639–643

    CAS  Google Scholar 

  • Bartsch H et al (2012) Longitudinal melatonin production in female laboratory rats during 1997-2006: possible modulatory effects of changing solar activity. Curr Aging Sci 5:186–194

    Article  CAS  Google Scholar 

  • Bartsch C, Bartsch H, Seebald E, Kupper H, Mecke D (2014) Modulation of pineal activity during the 23rd sunspot cycle: melatonin rise during the ascending phase of the cycle is accompanied by an increase of the sympathetic tone. Indian J Exp Biol 52:438–447

    CAS  Google Scholar 

  • Bischoff P, Rundshagen I (2011) Awareness under general anesthesia. Dtsch Arztebl Int 108:1–7. https://doi.org/10.3238/arztebl.2011.0001

    Article  Google Scholar 

  • Blusse van Oud-Alblas HJ, van Dijk M, Liu C, Tibboel D, Klein J, Weber F (2009) Intraoperative awareness during paediatric anaesthesia. Br J Anaesth 102:104–110. https://doi.org/10.1093/bja/aen315

    Article  CAS  Google Scholar 

  • Burch JB, Reif JS, Yost MG (2008) Geomagnetic activity and human melatonin metabolite excretion. Neurosci Lett 438:76–79. https://doi.org/10.1016/j.neulet.2008.04.031

    Article  CAS  Google Scholar 

  • Bureau YR, Persinger MA (1992) Geomagnetic activity and enhanced mortality in rats with acute (epileptic) limbic lability. Int J Biometeorol 36:226–232

    Article  CAS  Google Scholar 

  • Campbell WH (2003) Introduction to geomagnetic fields. Cambridge University Press, New York

    Book  Google Scholar 

  • Caswell JM, Singh M, Persinger MA (2016) Simulated sudden increase in geomagnetic activity and its effect on heart rate variability: Experimental verification of correlation studies. Life Sci Space Res (Amst) 10:47–52. https://doi.org/10.1016/j.lssr.2016.08.001

    Article  Google Scholar 

  • Close J (2012) Are stress responses to geomagnetic storms mediated by the cryptochrome compass system? Proc Biol Sci 279:2081–2090. https://doi.org/10.1098/rspb.2012.0324

    Article  Google Scholar 

  • Cullen DJ, Eger EI II, Stevens WC, Smith NT, Cromwell TH, Cullen BF, Gregory GA, Bahlman SH, Dolan WM, Stoelting RK, Fourcade HE (1972) Clinical signs of anesthesia. Anesthesiology 36:21–36

    Article  CAS  Google Scholar 

  • Davidson AJ, Huang GH, Czarnecki C, Gibson MA, Stewart SA, Jamsen K, Stargatt R (2005) Awareness during anesthesia in children: a prospective cohort study. Anesth Analg 100:653–661, table of contents. https://doi.org/10.1213/01.ANE.0000150604.73481.00

    Article  Google Scholar 

  • Davis JA (2008) Mouse and rat anesthesia and analgesia. Curr Protoc Neurosci 42:A.4B.1–A.4B.21

    Google Scholar 

  • Del Seppia C, Mezzasalma L, Messerotti M, Cordelli A, Ghione S (2006) Simulation of the geomagnetic field experienced by the International Space Station in its revolution around the Earth: effects on psychophysiological responses to affective picture viewing. Neurosci Lett 400:197–202. https://doi.org/10.1016/j.neulet.2006.02.045

    Article  CAS  Google Scholar 

  • Dimitrova S (2006) Relationship between human physiological parameters and geomagnetic variations of solar origin. Adv Space Res 37:1251–1257

    Article  Google Scholar 

  • Dimitrova S, Stoilova I, Yanev T, Cholakov I (2004) Effect of local and global geomagnetic activity on human cardiovascular homeostasis. Arch Environ Health 59:84–90. https://doi.org/10.3200/AEOH.59.2.84-90

    Article  Google Scholar 

  • Durand-Manterola HJ, Mendoza B, Diaz-Sandoval R (2001) Electric currents induced inside biological cells by geomagnetic and atmospheric phenomena. Adv Space Res 28:679–684

    Article  CAS  Google Scholar 

  • Feigin VL et al (2014) Geomagnetic storms can trigger stroke: evidence from 6 large population-based studies in Europe and Australasia. Stroke 45:1639–1645. https://doi.org/10.1161/STROKEAHA.113.004577

    Article  Google Scholar 

  • Flecknell PA (2015) Laboratory animal anesthesia. Academic Press, Oxford

    Google Scholar 

  • Fournier NM, Darnbrough AL, Wintink AJ, Kalynchuk LE (2009) Altered synapsin I immunoreactivity and fear behavior in male and female rats subjected to long-term amygdala kindling. Behav Brain Res 196:106–115. https://doi.org/10.1016/j.bbr.2008.07.022

    Article  CAS  Google Scholar 

  • Fournier NM, Andersen DR, Botterill JJ, Sterner EY, Lussier AL, Caruncho HJ, Kalynchuk LE (2010) The effect of amygdala kindling on hippocampal neurogenesis coincides with decreased reelin and DISC1 expression in the adult dentate gyrus. Hippocampus 20:659–671. https://doi.org/10.1002/hipo.20653

    Article  CAS  Google Scholar 

  • Friedman H, Becker RO, Bachman CH (1963) Geomagnetic parameters and psychiatric hospital admissions. Nature 200:626–628

    Article  CAS  Google Scholar 

  • Golombek DA, Pevet P, Cardinali DP (1996) Melatonin effects on behavior: possible mediation by the central GABAergic system. Neurosci Biobehav Rev 20:403–412

    Article  CAS  Google Scholar 

  • Heyers D, Manns M, Luksch H, Gunturkun O, Mouritsen H (2007) A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One 2:e937. https://doi.org/10.1371/journal.pone.0000937

    Article  Google Scholar 

  • Hocking G, Hennessy B, Weightman W, Gibbs NM (2008) Awareness and anaesthesia. Br J Anaesth 101:740; author reply 740-741–741. https://doi.org/10.1093/bja/aen281

    Article  CAS  Google Scholar 

  • Jeong JH, Choi KB, Choi HJ, Song HJ, Min YS, Ko SK, Im BO, Sohn UD (2005) Extremely low frequency magnetic fields modulate bicuculline-induced-convulsion in rats. Arch Pharm Res 28:587–591

    Article  CAS  Google Scholar 

  • Kay RW (1994) Geomagnetic storms: association with incidence of depression as measured by hospital admission. Br J Psychiatry 164:403–409

    Article  CAS  Google Scholar 

  • Keshavan MS, Gangadhar BN, Gautam RU, Ajit VB, Kapur RL (1981) Convulsive threshold in humans and rats and magnetic field changes: observations during total solar eclipse. Neurosci Lett 22:205–208

    Article  CAS  Google Scholar 

  • Kroeker G, Parkinson D, Vriend J, Peeling J (1996) Neurochemical effects of static magnetic field exposure. Surg Neurol 45:62–66

    Article  CAS  Google Scholar 

  • Labes MM (1966) A possible explanation for the effect of magnetic fields on biological systems. Nature 211:968

    Article  CAS  Google Scholar 

  • Lopez U, Habre W, Laurencon M, Haller G, Van der Linden M, Iselin-Chaves IA (2007) Intra-operative awareness in children: the value of an interview adapted to their cognitive abilities. Anaesthesia 62:778–789. https://doi.org/10.1111/j.1365-2044.2007.05133.x

    Article  CAS  Google Scholar 

  • Loscher W, Fiedler M (1996) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VI. Seasonal influences on maximal electroshock and pentylenetetrazol seizure thresholds. Epilepsy Res 25:3–10

    Article  CAS  Google Scholar 

  • Loscher W, Fiedler M (2000) The role of technical, biological, and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VII. Seasonal influences on anticonvulsant drug actions in mouse models of generalized seizures. Epilepsy Res 38:231–248

    Article  CAS  Google Scholar 

  • Marron MT, Goodman EM, Sharpe PT, Greenebaum B (1988) Low frequency electric and magnetic fields have different effects on the cell surface. FEBS Lett 230:13–16

    Article  CAS  Google Scholar 

  • Marseglia L, D'Angelo G, Manti S, Aversa S, Arrigo T, Reiter RJ, Gitto E (2015) Analgesic, anxiolytic and anaesthetic effects of melatonin: new potential uses in pediatrics. Int J Mol Sci 16:1209–1220. https://doi.org/10.3390/ijms16011209

    Article  CAS  Google Scholar 

  • Mashour GA (2010) Posttraumatic stress disorder after intraoperative awareness and high-risk surgery. Anesth Analg 110:668–670. https://doi.org/10.1213/ANE.0b013e3181c35926

    Article  Google Scholar 

  • Mayaud PN (1980) Derivation, meaning, and use of geomagnetic indices. Geophysical monograph 22. America geophysical union, Washington DC

    Book  Google Scholar 

  • Mendelson WB (2002) Melatonin microinjection into the medial preoptic area increases sleep in the rat. Life Sci 71:2067–2070

    Article  CAS  Google Scholar 

  • Mihara T, Kikuchi T, Kamiya Y, Koga M, Uchimoto K, Kurahashi K, Goto T (2012) Day or night administration of ketamine and pentobarbital differentially affect circadian rhythms of pineal melatonin secretion and locomotor activity in rats. Anesth Analg 115:805–813. https://doi.org/10.1213/ANE.0b013e3182632bcb

    Article  CAS  Google Scholar 

  • Murakami S, Cornélissen G, Katinas G, Mitsutake G, Otsuka K, Breus T, Gigolashvili M, Fišer B, Pazdírek J, Svaèinová H, Siegelova J, Halberg F (2005) Circamultiseptan aspect of sudden death: competing socio-ecological synchronizers: alcohol and magnetics? Scr Med (Brno) 78:67–74

    CAS  Google Scholar 

  • O'Connor RP, Persinger MA (1997) Geophysical variables and behavior: LXXXII. A strong association between sudden infant death syndrome and increments of global geomagnetic activity--possible support for the melatonin hypothesis. Percept Mot Skills 84:395–402. https://doi.org/10.2466/pms.1997.84.2.395

    Article  CAS  Google Scholar 

  • Olah A, Jozsa R, Csernus V, Sandor J, Muller A, Zeman M, Hoogerwerf W, Cornélissen G, Halberg F (2008) Stress, geomagnetic disturbance, infradian and circadian sampling for circulating corticosterone and models of human depression? Neurotox Res 13:85–96

    Article  CAS  Google Scholar 

  • Ossenkopp KP, Kavaliers M, Hirst M (1983) Reduced nocturnal morphine analgesia in mice following a geomagnetic disturbance. Neurosci Lett 40:321–325

    Article  CAS  Google Scholar 

  • Paddleford RR (1999) Manual of small animal anesthesia, 2nd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  • Persinger MA (1976) Day time wheel running activity in laboratory rats following geomagnetic event of 5–6 July 1974. Int J Biometeorol 20:19–22

    Article  CAS  Google Scholar 

  • Persinger MA (1987) Geopsychology and geopsychopathology: mental processes and disorders associated with geochemical and geophysical factors. Experientia 43:92–104

    Article  CAS  Google Scholar 

  • Persinger MA, McKay BE, O'Donovan CA, Koren SA (2005) Sudden death in epileptic rats exposed to nocturnal magnetic fields that simulate the shape and the intensity of sudden changes in geomagnetic activity: an experiment in response to Schnabel, Beblo and May. Int J Biometeorol 49:256–261. https://doi.org/10.1007/s00484-004-0234-2

    Article  CAS  Google Scholar 

  • Rajaram M, Mitra S (1981) Correlation between convulsive seizure and geomagnetic activity. Neurosci Lett 24:187–191

    Article  CAS  Google Scholar 

  • Rapoport SI, Boldypakova TD, Malinovskaia NK, Oraevskii VN, Meshcheriakova SA, Breus TK, Sosnovskii AM (1998) Magnetic storms as a stress factor. Biofizika 43:632–639

    CAS  Google Scholar 

  • Reale M, D'Angelo C, Costantini E, Tata AM, Regen F, Hellmann-Regen J (2016) Effect of environmental extremely low-frequency electromagnetic fields exposure on inflammatory mediators and serotonin metabolism in a human neuroblastoma cell line. CNS Neurol Disord Drug Targets 15:1203–1215

    Article  CAS  Google Scholar 

  • Rosenstein RE, Cardinali DP (1990) Central gabaergic mechanisms as targets for melatonin activity in brain. Neurochem Int 17:373–379

    Article  CAS  Google Scholar 

  • Salunke BP, Umathe SN, Chavan JG (2014) Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice. Electromagn Biol Med 33:312–326. https://doi.org/10.3109/15368378.2013.839453

    Article  CAS  Google Scholar 

  • Sandin RH (2003) Awareness 1960-2002, explicit recall of events during general anaesthesia. Adv Exp Med Biol 523:135–147

    Article  Google Scholar 

  • Saunders R (2005) Static magnetic fields: animal studies. Prog Biophys Mol Biol 87:225–239. https://doi.org/10.1016/j.pbiomolbio.2004.09.001

    Article  Google Scholar 

  • Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB (2004) The incidence of awareness during anesthesia: a multicenter United States study. Anesth Analg 99:833–839, table of contents. https://doi.org/10.1213/01.ANE.0000130261.90896.6C

    Article  Google Scholar 

  • Semm P (1988) The magnetic detection system of the pigeon: involvement of pineal and retinal photoreceptors and the vestibular system. In: Connor M, Lovely R (eds) Electromagnetic fields and neurobehavioral function. Liss, New York, pp 47–61

    Google Scholar 

  • Shaposhnikov D, Revich B, Gurfinkel Y, Naumova E (2014) The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia. Int J Biometeorol 58:799–808. https://doi.org/10.1007/s00484-013-0660-0

    Article  Google Scholar 

  • Sieron A et al (2004) Alternating extremely low frequency magnetic field increases turnover of dopamine and serotonin in rat frontal cortex. Bioelectromagnetics 25:426–430. https://doi.org/10.1002/bem.20011

    Article  CAS  Google Scholar 

  • Sigalovsky N (2003) Awareness under general anesthesia. AANA J 71:373–379

    Google Scholar 

  • Silva A, Antunes L (2012) Electroencephalogram-based anaesthetic depth monitoring in laboratory animals. Lab Anim 46:85–94. https://doi.org/10.1258/la.2012.011135

    Article  CAS  Google Scholar 

  • Stoupel E (2002) The effect of geomagnetic activity on cardiovascular parameters. Biomed Pharmacother 56(Suppl 2):247s–256s

    Article  Google Scholar 

  • Stoupel E, Martfel J, Rotenberg Z (1991) Admissions of patients with epileptic seizures (E) and dizziness (D) related to geomagnetic and solar activity levels: differences in female and male patients. Med Hypotheses 36:384–388

    Article  CAS  Google Scholar 

  • Stoupel E, Petrauskiene J, Kalediene R, Abramson E, Sulkes J (1995) Clinical cosmobiology: the Lithuanian study 1990-1992. Int J Biometeorol 38:204–208

    Article  CAS  Google Scholar 

  • Stoupel EG, Petrauskiene J, Kalediene R, Sauliune S, Abramson E, Shochat T (2015) Space weather and human deaths distribution: 25 years' observation (Lithuania, 1989-2013). J Basic Clin Physiol Pharmacol 26:433–441. https://doi.org/10.1515/jbcpp-2014-0125

    Article  Google Scholar 

  • Wang F, Li J, Wu C, Yang J, Xu F, Zhao Q (2003) The GABA(A) receptor mediates the hypnotic activity of melatonin in rats. Pharmacol Biochem Behav 74:573–578

    Article  CAS  Google Scholar 

  • Weihe WH (1973) The effect of temperature on the action of drugs. Annu Rev Pharmacol 13:409–425. https://doi.org/10.1146/annurev.pa.13.040173.002205

    Article  CAS  Google Scholar 

  • Weihe WH (1976) Effect of drugs in adaptation in heat and cold. Int J Biometeorol 6:125–136

    Article  CAS  Google Scholar 

  • Whelan G, Flecknell PA (1992) The assessment of depth of anaesthesia in animals and man. Lab Anim 26:153–162. https://doi.org/10.1258/002367792780740602

    Article  CAS  Google Scholar 

  • Whissell PD, Persinger MA (2007) Emerging synergisms between drugs and physiologically-patterned weak magnetic fields: implications for neuropharmacology and the human population in the twenty-first century. Curr Neuropharmacol 5:278–288. https://doi.org/10.2174/157015907782793603

    Article  CAS  Google Scholar 

  • Whitlock EL et al (2015) Psychological sequelae of surgery in a prospective cohort of patients from three intraoperative awareness prevention trials. Anesth Analg 120:87–95. https://doi.org/10.1213/ANE.0000000000000498

    Article  Google Scholar 

  • Zhang L, Zhou L, Vega-Gonzalez A, Mendoza D, Drucker-Colin R (1997) Extremely low frequency magnetic fields promote neurite varicosity formation and cell excitability in cultured rat chromaffin cells. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 118:295–299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated in memory of Dr. Michael Persinger for his  unwavering support and encouragement to pursue the unknown and unravel the “great cerebral knot.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil M. Fournier.

Ethics declarations

All procedures were approved by the local animal care committee and were in accordance with guidelines established by the Canadian Council on Animal Care (CCAC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fournier, N.M. Impairment in behavioral sedation in rats during periods of elevated global geomagnetic activity. Int J Biometeorol 63, 1243–1249 (2019). https://doi.org/10.1007/s00484-019-01741-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-019-01741-x

Keywords

Navigation