Skip to main content
Log in

Climate change: consequences on the pollination of grasses in Perugia (Central Italy). A 33-year-long study

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Many works carried out in the last decades have shown that the pollen season for taxa flowering in winter and spring, in temperate regions, has tended to be earlier, probably due to the continuous rise in temperature. The mean annual temperature in Perugia, Central Italy, was about 0.5 °C higher in the last three decades compared with that registered from 1952 to 1981. The increase of temperature took place mainly in winter and spring, while no significant variation was recorded during the summer and autumn. This scenario shows variations in the timing and behavior of flowering of many spontaneous plants such as grasses, whose phenology is strongly influenced by air temperature. This work reports fluctuations in the airborne grass pollen presence in Perugia over a 33-year period (1982–2014), in order to study the influence of the warming registered in recent years on the behavior of pollen release of this taxon. The grass pollen season in Perugia typically lasts from the beginning of May to late July. The start dates showed a marked trend to an earlier beginning of the season (−0.4 day/year), as well as a strong correlation with the average temperatures of March and April. The peak is reached around 30th May, but the annual pollen index (API) is following a decreasing trend. The correlation between starting dates and spring temperatures could be interesting for the constitution of a forecasting model capable of predicting the presence of airborne grass pollen, helping to plan therapies for allergic people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antépara I, Fernández JC, Gamboa P, Jauregui I, Miguel F (1995) Pollen allergy in the Bilbao area (European Atlantic seaboard climate): pollination forecasting methods. Clin Exp Allergy 25(2):133–140

    Article  Google Scholar 

  • Baskerville GL, Emin P (1969) Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50:514–517

    Article  Google Scholar 

  • Beggs PJ (2004) Impacts of climatic change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513

    Article  CAS  Google Scholar 

  • Brighetti MA, Costa C, Menesatti P, Antonucci F, Tripodi S, Travaglini A (2014) Multivariate statistical forecasting modeling to predict Poaceae pollen critical concentrations by meteoclimatic data. Aerobiologia 30:25–33

    Article  Google Scholar 

  • Chłopek K (2007) Grass pollen (Poaceae) in the air of Sosnowiec (Poland), 1997–2006. Acta Agrobot 60:79–86

    Google Scholar 

  • D’Amato G (2011) Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma. Multidiscip Respir Med 6(1):28–37

    Article  Google Scholar 

  • D’Amato G, Spieksma FTM, Bonini S (eds) (1991) Allergenic pollen and pollinosis in Europe. Blackwell Science, Oxford, pp. 109–112

    Google Scholar 

  • D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, et al. (2007) Allegenic pollen and pollen allergy in Europe. Allergy 62(9):976–990

    Article  Google Scholar 

  • Dahl A, Galán C, Hajkova L, Pauling A, Sikkoparija B, Smith M, et al. (2013) The onset, course and intensity of pollen season. In: Sofiev M, Bergman K (eds) Allergenic pollen. Springer, Heidelberg, Germany, pp. 29–70

    Chapter  Google Scholar 

  • Comune di Perugia (2015) Disciplinare tecnico per la manutenzione di aree verdi pubbliche appartenenti al patrimonio comunale www.comune.perugia.it

  • Emberlin J, Jones S, Bailey J, Caulton E, Corden J, Dubbels S, et al. (1994) Variation in the start of the grass pollen season at selected sites in United Kingdom 1987–1992. Grana 33:94–99

    Article  Google Scholar 

  • European Environmental Agency (2015) Global and European temperatures. Indicator Assessment CSI 012 , CLIM 001

  • Frenguelli G (2002) Interactions between climatic changes and allergenic plants. Monaldi Arch Chest Dis 57(2):141–143

    CAS  Google Scholar 

  • Frenguelli G and Tedeschini E (2009) Valutazione del contributo di alcune specie spontanee al calendario pollinico delle Poaceae della città di Perugia. 104° Congresso della Società Botanica Italiana Onlus. Campobasso (Italy), 16th–19th

  • Frenguelli G, Ghitarrini S, Tedeschini E (2014a) Climatic changes in Mediterranean area and pollen monitoring. Flora Mediterr 24:99–107

    Google Scholar 

  • Frenguelli G, Ghitarrini S and Tedschini E (2014b) Possible relation between climate change and pollination of grasses in Central Italy. 10th International Congress of Aerobiology, Sydney

  • Frenguelli G, Ghitarrini S and Tedeschini E (2015) Quali cause alla base della variabilità interannuale nella pollinazione delle graminacee. XIV Congresso Nazionale Associazione Italiana di Aerobiologia (AIA). Vertemate con Minoprio (Italy), 24–26

  • Galán C, Emberlin J, Domínguez E, Bryant RH, Villamandos F (1995) A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana 34:189–198

    Article  Google Scholar 

  • García de León D, García-Mozo H, Galán C, Alcázar P, Lima M, González-Andújar JL (2015) Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change. Sci Total Environ 530-531:103–109

    Article  Google Scholar 

  • García-Mozo H, Mestre A and Galán C (2011) Climate change in Spain: phenological trends in southern areas. In: Blanco J, Kheradmand H (Eds.), Climate change socioeconomic effects. InTech, p 237–250

  • Gonzalez Minero FJ, Candau P, Tomas C, Morales J (1998) Airborne grass (Poaceae) pollen in southern Spain. Results of a 10-year study (1987–96). Allergy 53:266–274

    Article  CAS  Google Scholar 

  • Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Chang Biol 15:1930–1948

    Article  Google Scholar 

  • Green BJ, Dettman M, Yli-Panula E, Rutheford S, Simpson R (2004) Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994–1999. Int J Biometeorol 48(4):172–178

    Article  Google Scholar 

  • Hamaoui-Laguel L, Vautard R, Liu L, Solmon F, Viovy N, Khvorostyanov D, et al. (2015) Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat Clim Chang 5:766–771

    Article  Google Scholar 

  • Heide OM (1994) Control of flowering and reproduction in temperate grasses. New Phytol 128:347–362

    Article  CAS  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Hrabina M (2007) Immunologia molecolare degli allergeni di pollini di graminacee. Expression (Ed Stallergens) 26:8–12

    Google Scholar 

  • Iglesias I, Aira MJ, Jato V (1998) Poaceae pollen in the atmosphere of Santiago de Compostela: its relationship with meteorology. Aerobiologia 14:141–145

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernamental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, Tignar MBM, Allen SK, Boshung J et al. (eds.) Cambridge University Press, Cambridge

  • IPCC (2014) Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernamental Panel on Climate Change. Core writing team: In: Pachauri RK, Meyer LA (Eds.). IPCC, Geneva

  • Jato V, Rodrίguez-Rajo FJ, Alcázar P, De Nuntiis P, Galán C, Mandrioli P (2006) May the definition of pollen season influence aerobiological results? Aerobiologia 22:13–25

    Article  Google Scholar 

  • Jato V, Rodrίguez-Rajo FJ, Seijo MC, Aira MJ (2009) Poaceae pollen in Galicia (N.W. Spain): characterisation and recent trends in atmospheric pollen season. Int J Biometeorol 53(4):333–344

    Article  CAS  Google Scholar 

  • Jochner S, Ziello C, Böck A, Estrella N, Buters J, Weichenmeier I, et al. (2012) Spatio-temporal investigation of flowering dates and pollen counts in the topographically complex Zugspitze area on the German-Austrian border. Aerobiologia 28:541–556

    Article  Google Scholar 

  • Kasprzyk I (2009) Forecasting the start of Quercus pollen season using several methods—the evaluation of their efficiency. Int J Biometeorol 53:345–353

    Article  Google Scholar 

  • Kasprzyk I, Walanus A (2010) Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Św. (SE Poland). J Environ Monit 12:906–916

    Article  CAS  Google Scholar 

  • Menzel A, Sparks TA, Estrella N, Roy D (2006) Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol Biogeogr 15:498–504

    Article  Google Scholar 

  • Ministero della Salute (2010) Linee di indirizzo per la prevenzione nelle scuole dei fattori di rischio indoor per allergie ed asma. www.salute.gov.it

  • Myszkowska D (2010) The grass pollen season dynamics in relation to the meteorological conditions in Cracow, southern Poland, 1991–2008. Acta Agrobot 63:85–96

    Article  Google Scholar 

  • Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182

    Article  Google Scholar 

  • Norris-Hill J, Emberlin J (1993) The incidence of increased pollen concentrations during rainfall in the air of London. Aerobiologia 9(1):27–32

    Article  Google Scholar 

  • Oteros J, García-Mozo H, Hervás C, Galan C (2013) Biometeorological autoregressive indices for predicting pollen intensity. Int J Biometeorol 57(2):307–316

    Article  CAS  Google Scholar 

  • Pacini E (2000) From anther and pollen ripening to pollen presentation. Plant Syst Evol 222(1):19–43

    Article  Google Scholar 

  • Pawankar R, Canonica GW, Holgate ST and Lockey RF (2011) White book on allergy 2011–2012: executive summary. WAO—Warld Allergy Organization

  • Perveen A (2006) A contribution to the pollen morphology of family Gramineae. World Appl Sci J 1(2):60–65

    Google Scholar 

  • Piotrowska K (2012) Forecasting the Poaceae pollen season in eastern Poland. Grana 51:263–269

    Article  Google Scholar 

  • Primack RB (1985) Patterns of flowering phenology in communities, populations, individuals and single flowers. In: White J (ed) The population structure of vegetation, p 571–593

  • Puc M (2011) Threat of allergenic airborne grass pollen in Szczecin, NW Poland: the dynamics of pollen seasons, effect of meteorological variables and air pollution. Aerobiologia 27:191–202

    Article  Google Scholar 

  • Puc M, Puc MI (2004) Allergenic airborne grass pollen in Szczecin, Poland. Ann Agric Environ Med 11(2):237–244

    Google Scholar 

  • Reddi CS, Reddi NS, Atluri Janaki B (1988) Circadian patterns of pollen release in some species of Poaceae. Rev Palaeobot Palynol 54(1–2):11–42

    Article  Google Scholar 

  • Ridolo E, Albertini R, Giordano D, Soliani L, Usberti I, Dall’Aglio PP (2007) Airborne pollen concentrations and the incidence of allergic asthma and rhinoconjunctivitis in northern Italy from 1992 to 2003. Int Arch Allergy Immunol 142(2):151–157

    Article  CAS  Google Scholar 

  • Rivas-Martínez S, Rivas Sáenz S and Penas A (2011) Worldwide bioclimatic classification system. Global geobotany. 1:1-634+4 maps

  • Rodriguez-Rajo FJ, Frenguelli G, Jato MV (2003) Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). Int J Biometeorol 47:117–125

    CAS  Google Scholar 

  • Rodríguez-Rajo FJ, Astray G, Ferreiro-Lage JA, Aira MJ, Jato-Rodriguez MV, Mejuto JC (2010) Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Netw 23(3):419–425

    Article  Google Scholar 

  • Sabariego S, Cuesta P, Fernández-González F, Pérez-Badia R (2012) Models for forecasting airborne Cupressaceae pollen levels in central Spain. Int J Biometeorol 56(2):253–258

    Article  Google Scholar 

  • Sánchez-Mesa JA, Galán C, Martínez-Heras JA, Hervás-Martínes C (2002) The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: the southern part of the Iberian Peninsula. Clin Exp Allergy 32(11):1606–1612

    Article  Google Scholar 

  • Sánchez-Mesa JA, Smith M, Emberlin J, Allitt U, Caulton E, Galán C (2003) Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia 19:243–250

    Article  Google Scholar 

  • Sánchez-Mesa JA, Galan C, Hervas C (2005) The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Int J Biometeorol 49:355–362

    Article  Google Scholar 

  • Smith M, Emberlin J (2006) A-30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50:233–242

    Article  Google Scholar 

  • Smith M, Emberlin J, Stach A, Rantio-Lehtimäki A, Caulton E, Thibaudon M, et al. (2009) Influence of the North Atlantic Oscillation on grass pollen counts in Europe. Aerobiologia 25:321–332

    Article  Google Scholar 

  • Tripodi S, Frediani T, Lucarelli S, Macrì F, Pingitore G, Di Rienzo BA, et al. (2012) Molecular profiles of IgE to Phleum pratense in children with grass pollen allergy: implication for specific immunotherapy. J Allergy Clin Immunol 129(3):834–839

    Article  CAS  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, et al. (2002) Ecological responses to recent climate change. Nature 416:389–395

  • Weeke ER, Spieksma FTM (1991) Allergenic significance of Gramineae pollen. In: D’Amato G, Spieksma FTM, Bonini S (eds) Allergenic pollen and pollinosis in Europe. Blackwell Science, Oxford, pp. 109–112

    Google Scholar 

  • Weger L, Bergmann KC, Rantio-Lehtimäki A, Dahl A, Buters A, Dechamps C, et al. (2013) Impact of pollen. In: Sofiev M, Bergman K (eds) Allergenic pollen. Springer, Heidelberg, Germany, pp. 161–215

    Chapter  Google Scholar 

  • Zhang Y, Bielory L, Cai T, Mi Z, Georgopoulos P (2014) Climate change effect on Betula (birch) and Quercus (oak) pollen season in the United States. Int J Biometeorol 58:909–919

    Article  Google Scholar 

  • Ziello C, Bock A, Estrella N, Ankerst D, Menzel A (2012) First flowering of the wind-pollinated species with the greatest phenological advances in Europe. Ecography 35:1017–1023

    Article  Google Scholar 

  • Ziska LH, Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia L.), a known allergy-inducing species: implications for public health. Funct Plant Biol 27(10):893–898

    Article  Google Scholar 

  • Ziska LH, Ebi KL (2015) Climate change, carbon dioxide and public health. In: Luber G, Lemery J (eds) Global climate change and human health: from science to practice, pp. 195–220

    Google Scholar 

Download references

Acknowledgments

The authors thank the Agronomy and Crop Science Research Unit of the Department of Agricultural, Food and Environmental Sciences (University of Perugia), for supplying the meteorological data collected by the station located in the experimental fields of the Unit in Papiano (Perugia, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghitarrini Sofia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofia, G., Emma, T., Veronica, T. et al. Climate change: consequences on the pollination of grasses in Perugia (Central Italy). A 33-year-long study. Int J Biometeorol 61, 149–158 (2017). https://doi.org/10.1007/s00484-016-1198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1198-8

Keywords

Navigation