Skip to main content
Log in

Hourly photosynthetically active radiation estimation in Midwestern United States from artificial neural networks and conventional regressions models

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The relationship between hourly photosynthetically active radiation (PAR) and the global solar radiation (R s ) was analyzed from data gathered over 3 years at Bondville, IL, and Sioux Falls, SD, Midwestern USA. These data were used to determine temporal variability of the PAR fraction and its dependence on different sky conditions, which were defined by the clearness index. Meanwhile, models based on artificial neural networks (ANNs) were established for predicting hourly PAR. The performance of the proposed models was compared with four existing conventional regression models in terms of the normalized root mean square error (NRMSE), the coefficient of determination (r 2), the mean percentage error (MPE), and the relative standard error (RSE). From the overall analysis, it shows that the ANN model can predict PAR accurately, especially for overcast sky and clear sky conditions. Meanwhile, the parameters related to water vapor do not improve the prediction result significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar LJ, da Costa JM, Aguiar RG (2009) Fischer GR estimates and measurements of photosynthetically active radiation and global solar irradiance in Rondonia. In: AIP Conference Proceedings, p 435

  • Alados I, Alados-Arboledas L (1998) Direct and diffuse photosynthetically active radiation-measurements and modelling. Agric For Meteorol 93(1):27–38

    Google Scholar 

  • Alados I, Iy F-M, Alados-Arboledas L (1996) Photosynthetically active radiation: measurements and modelling. Agric For Meteorol 78(1):121–131

    Article  Google Scholar 

  • Alados I, Olmo FJ, Foyo-Moreno I, Alados-Arboledas L (2000) Estimation of photosynthetically active radiation under cloudy conditions. Agric Forest Meteorol 102(1):39–50. doi:10.1016/S0168-1923(00)00091-5

    Article  Google Scholar 

  • Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD—a national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81(10):2341–2357

    Article  Google Scholar 

  • Azadeh A, Maghsoudi A, Sohrabkhani S (2009) An integrated artificial neural networks approach for predicting global radiation. Energy Convers Manag 50(6):1497–1505. doi:10.1016/j.enconman.2009.02.019

    Article  Google Scholar 

  • Behrang MA, Assareh E, Ghanbarzadeh A, Noghrehabadi AR (2010) The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 84(8):1468–1480. doi:10.1016/j.solener.2010.05.009

    Article  Google Scholar 

  • Blackburn WJ, Proctor JTA (1983) Estimating photosynthetically active radiation from measured solar irradiance. Solar Energy 31(2):233–234. doi:10.1016/0038-092X(83)90087-7

    Article  Google Scholar 

  • Britton CM, Dodd JD (1976) Relationships of photosynthetically active radiation and shortwave irradiance. Agric Meteorol 17(1):1–7. doi:10.1016/0002-1571(76)90080-7

    Article  Google Scholar 

  • Chen J-L, Liu H-B, Wu W, Xie D-T (2011) Estimation of monthly solar radiation from measured temperatures using support vector machines—a case study. Renew Energy 36(1):413–420. doi:10.1016/j.renene.2010.06.024

    Article  Google Scholar 

  • DeLuisi J, Augustine J, Cornwall C, Hodges G (1999) Contrasting ARM’s SRB measurements with six SURFRAD stations. Proc 9th ARM Science Team, San Antonio, TX, USA 2226:1–6

  • Dye DG (2004) Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions. J Geophys Res: Atmos 109:D10203. doi:10.1029/2003JD004251

  • Escobedo JF, Gomes EN, Oliveira AP, Soares J (2009) Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil. Appl Energy 86(3):299–309. doi:10.1016/j.apenergy.2008.04.013

    Article  Google Scholar 

  • Escobedo JF, Gomes EN, Oliveira AP, Soares J (2011) Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil. Renew Energy 36(1):169–178. doi:10.1016/j.renene.2010.06.018

    Article  Google Scholar 

  • Finch DA, Bailey WG, McArthur LJB, Nasitwitwi M (2004) Photosynthetically active radiation regimes in a southern African savanna environment. Agric Forest Meteorol 122(3–4):229–238. doi:10.1016/j.agrformet.2003.09.015

    Article  Google Scholar 

  • Ge S, Smith R, Jacovides C, Kramer M, Carruthers R (2011) Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theor Appl Climatol 105(1–2):107–118. doi:10.1007/s00704-010-0368-6

    Article  Google Scholar 

  • Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Modelling 160(3):249–264. doi:10.1016/S0304-3800(02)00257-0

    Article  Google Scholar 

  • Halawa E, GhaffarianHoseini A, Hin Wa Li D (2014) Empirical correlations as a means for estimating monthly average daily global radiation: a critical overview. Renew Energy 72:149–153.

  • Howell TA, Meek DW, Hatfield JL (1983) Relationship of photosynthetically active radiation to shortwave radiation in the San Joaquin Valley. Agric Meteorol 28(2):157–175. doi:10.1016/0002-1571(83)90005-5

    Article  Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Access Online via Elsevier

  • Jacovides CP, Timvios FS, Papaioannou G, Asimakopoulos DN, Theofilou CM (2004) Ratio of PAR to broadband solar radiation measured in Cyprus. Agric Forest Meteorol 121(3–4):135–140. doi:10.1016/j.agrformet.2003.10.001

    Article  Google Scholar 

  • Jacovides C, Tymvios F, Assimakopoulos V, Kaltsounides N (2007) The dependence of global and diffuse PAR radiation components on sky conditions at Athens, Greece. Agric For Meteorol 143(3):277–287

    Article  Google Scholar 

  • Jacovides CP, Boland J, Asimakopoulos DN, Kaltsounides NA (2010) Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin. Renew Energy 35(8):1820–1827. doi:10.1016/j.renene.2009.11.015

    Article  CAS  Google Scholar 

  • Jacovides CP, Tymvios FS, Boland J, Tsitouri M (2015) Artificial Neural Network models for estimating daily solar global UV, PAR and broadband radiant fluxes in an eastern Mediterranean site. Atmos Res(0). doi:10.1016/j.atmosres.2013.11.004

    Google Scholar 

  • Kaushika ND, Tomar RK, Kaushik SC (2014) Artificial neural network model based on interrelationship of direct, diffuse and global solar radiations. Solar Energy 103(0):327–342. doi:10.1016/j.solener.2014.02.015

    Article  Google Scholar 

  • Kisi O (2014) Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach. Energy 64(0):429–436. doi:10.1016/j.energy.2013.10.009

    Article  Google Scholar 

  • Lawrence MG (2005) The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Am Meteorol Soc 86(2):225–233. doi:10.1175/bams-86-2-225

    Article  Google Scholar 

  • Leal SS, Tíba C, Piacentini R (2011) Daily UV radiation modeling with the usage of statistical correlations and artificial neural networks. Renew Energy 36(12):3337–3344. doi:10.1016/j.renene.2011.05.007

    Article  Google Scholar 

  • Li R, Zhao L, Ding Y, Wang S, Ji G, Xiao Y, Liu G, Sun L (2010) Monthly ratios of PAR to global solar radiation measured at northern Tibetan Plateau, China. Solar Energy 84 (6):964–973. doi: 10.1016/j.solener.2010.03.005

  • Lopez G, Rubio MA, Martinez M, Batlles FJ (2001) Estimation of hourly global photosynthetically active radiation using artificial neural network models. Agric For Meteorol 107(4):279–291. doi:10.1016/s0168-1923(01)00217-9

    Article  Google Scholar 

  • McCree KJ (1973) The measurement of photosynthetically active radiation. Solar Energy 15(1):83–87. doi:10.1016/0038-092X(73)90010-8

    Article  CAS  Google Scholar 

  • McCree K (1981) Photosynthetically active radiation. In: Physiological Plant Ecology I. Springer, pp 41–55

  • Mohandes M, Rehman S, Halawani TO (1998) Estimation of global solar radiation using artificial neural networks. Renew Energy 14(1–4):179–184. doi:10.1016/S0960-1481(98)00065-2

    Article  Google Scholar 

  • Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Numerical analysis. Springer, pp 105–116

  • Papaioannou G, Nikolidakis G, Asimakopoulos D, Retalis D (1996) Photosynthetically active radiation in Athens. Agric Forest Meteorol 81(3–4):287–298. doi:10.1016/0168-1923(95)02290-2

    Article  Google Scholar 

  • Paulson ND, Schnitkey GD (2012) Policy concerns of midwestern grain producers for the 2012 farm bill. Am J Agric Econ 94(2):515–521

    Article  Google Scholar 

  • Perez R, Ineichen P, Seals R, Michalsky J, Stewart R (1990) Modeling daylight availability and irradiance components from direct and global irradiance. Sol Energy 44(5):271–289

    Article  Google Scholar 

  • Pohlert T (2004) Use of empirical global radiation models for maize growth simulation. Agric For Meteorol 126(1):47–58

    Article  Google Scholar 

  • Rao CN (1984) Photosynthetically active components of global solar radiation: measurements and model computations. Arch Meteorol Geophys Bioclimatol, Series B 34(4):353–364

    Article  Google Scholar 

  • Shahamiri SR, Binti Salim SS (2014) Real-time frequency-based noise-robust automatic speech recognition using multi-nets artificial neural networks: a multi-views multi-learners approach. Neurocomputing 129(0):199–207. doi:10.1016/j.neucom.2013.09.040

    Article  Google Scholar 

  • Stanhill G, Fuchs M (1977) The relative flux density of photosynthetically active radiation. J Appl Ecol 14(1):317–322

  • Szeicz G (1974) Solar radiation for plant growth. J Appl Ecol 11(2):617–636

  • Tymvios FS, Jacovides CP, Michaelides SC, Scouteli C (2005) Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation. Solar Energy 78(6):752–762. doi:10.1016/j.solener.2004.09.007

    Article  Google Scholar 

  • Udo S, Aro T (1999) Global PAR related to global solar radiation for central Nigeria. Agric For Meteorol 97(1):21–31

    Article  Google Scholar 

  • Viswanadham Y (1981) The relationship between total precipitable water and surface dew point. J Appl Meteorol 20(1):3–8

    Article  Google Scholar 

  • Wang Q, Tenhunen J, Schmidt M, Kolcun O, Droesler M, Reichstein M (2006) Estimation of total, direct and diffuse PAR under clear skies in complex alpine terrain of the National Park Berchtesgaden, Germany. Ecol Model 196(1–2):149–162. doi:10.1016/j.ecolmodel.2006.02.005

    Article  Google Scholar 

  • Wang L, Gong W, Li C, Lin A, Hu B, Ma Y (2013) Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China. Appl Energy 111(0):1010–1017. doi:10.1016/j.apenergy.2013.07.001

    Article  Google Scholar 

  • Wang L, Gong W, Feng L, Lin A, Hu B, Zhou M (2014) Estimation of hourly and daily photosynthetically active radiation in Inner Mongolia, China, from 1990 to 2012. Int J Climatol:n/a-n/a. doi:10.1002/joc.4197

    Google Scholar 

  • Wang L, Gong W, Hu B, Lin A, Li H, Zou L (2015) Modeling and analysis of the spatiotemporal variations of photosynthetically active radiation in China during 1961–2012. Renew Sustain Energy Rev 49:1019–1032. doi:10.1016/j.rser.2015.04.174

    Article  Google Scholar 

  • Wong L, Chow W (2001) Solar radiation model. Appl Energy 69(3):191–224

    Article  Google Scholar 

  • Yu X, Wu Z, Jiang W, Guo X (2015) Predicting daily photosynthetically active radiation from global solar radiation in the Contiguous United States. Energy Convers Manag 89(0):71–82. doi:10.1016/j.enconman.2014.09.038

    Article  Google Scholar 

  • Zhang X, Zhang Y, Zhoub Y (2000) Measuring and modelling photosynthetically active radiation in Tibet Plateau during April–October. Agric Forest Meteorol 102(2–3):207–212. doi:10.1016/S0168-1923(00)00093-9

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank the researchers affiliated with the SURFRAD network. We are grateful to the Earth System Research Laboratory, Global Monitoring Division from National Oceanic and Atmospheric Administration (NOAA) for providing the radiation data at Bondville and Sioux Falls sites. This study was funded by Natural Sciences and Engineering Research Council (NSERC) of Canada awarded to Professor Xulin Guo and the Chinese Scholarship Council (CSC) awarded to Xiaolei Yu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Guo, X. Hourly photosynthetically active radiation estimation in Midwestern United States from artificial neural networks and conventional regressions models. Int J Biometeorol 60, 1247–1259 (2016). https://doi.org/10.1007/s00484-015-1120-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1120-9

Keywords

Navigation