Skip to main content
Log in

Mathematical models for fluid flow in porous media with machine learning techniques for landfill waste leachate

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this article, we take a look at an Ordinary Differential Equation model that describes the bacteria’s role in anaerobic biodegradation dynamics of domestic garbage in a landfill. A nonlinear Ordinary Differential Equation system is used to describe biological activities. In the current study, the Levenberg–Marquardt Backpropagation Neural Network is used to locate alternate solutions for the model. The Runge–Kutta order four (RK-4) method is employed to produce reference solutions. Different scenarios were looked at to analyse our surrogate solution models. The reliability to verify the equilibrium of the mathematical model, physical quantities such as the half-saturation constant (\(K_S\)), the maximum growth rate (\(\mu _m\)), and the inhibition constant (\(K_I\)), can be modified. We categorise our potential solutions into training, validation and testing groups in order to assess how well our machine learning strategy works. The advantages of the Levenberg-Marquardt Backpropagation Neural Network scheme have been shown by studies that compare statistical data based on Mean Square Error Function, efficacy, regression plots, and error histograms. From the whole process we conclude that Levenberg–Marquardt Backpropagation Neural Network is accurate and authentic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. https://github.com/sulaiman513/Codes09Dec2023

Abbreviations

LMB–SNN:

Levenberg–Marquardt backpropagation and supervised neural network

MSEF:

Mean square error function

RK4:

Runge–Kutta order four

MLP:

Multilayer perceptron

ANN:

Artificial neural network

ODE:

Ordinary differential equation

\(K_S\) :

Half-saturation constant

\(\mu _m\) :

Maximum growth rate

\(K_I\) :

Inhibition constant

\(\text {CO}_2\) :

Carbon dioxide

\(\text {CH}_4\) :

Methane

OM:

Organic matter

S:

Simple soluble organic matter

References

  • Agostini F, Sundberg C, Navia R (2012) Is biodegradable waste a porous environment? a review. Waste management & research 30(10):1001–1015

    Article  CAS  Google Scholar 

  • Alhakami H, Umar M, Sulaiman M, Alhakami W, Baz A (2022) A numerical study of the dynamics of vector-born viral plant disorders using a hybrid artificial neural network approach. Entropy 24(11):1511

    Article  Google Scholar 

  • Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and bioengineering 10(6):707–723

    Article  CAS  Google Scholar 

  • Arzate JA, Kirstein M, Ertem FC, Kielhorn E, Ramirez Malule H, Neubauer P, Junne S (2017) Anaerobic digestion model (am2) for the description of biogas processes at dynamic feedstock loading rates. Chemie Ingenieur Technik 89(5):686–695

    Article  CAS  Google Scholar 

  • Asadollah SBHS, Sharafati A, Motta D, Yaseen ZM (2021) River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. Journal of environmental chemical engineering 9(1):104599

    Article  CAS  Google Scholar 

  • Belhachmi Z, Mghazli Z, Ouchtout S (2021) Mathematical modelling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill. Mathematics and Computers in Simulation 185:174–193

    Article  Google Scholar 

  • Benyahia B, Sari T, Cherki B, Harmand J (2012) Bifurcation and stability anal ysis of a two step model for monitoring anaerobic digestion processes. Journal of Process Control 22(6):1008–1019

    Article  CAS  Google Scholar 

  • Bernard O, Hadj-Sadok Z, Dochain D, Genovesi A, Steyer J-P (2001) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and bioengineering 75(4):424–438

    Article  CAS  Google Scholar 

  • Chenu D (2007) Modélisation des transferts réactifs de masse et de chaleur dans les installations de stockage de déchets ménagers: application aux installations de type bioréacteur (Unpublished doctoral dissertation)

  • Cornish-Bowden A (2013) The origins of enzyme kinetics. FEBS letters 587(17):2725–2730

    Article  CAS  Google Scholar 

  • Didi I, Dib H, Cherki B (2015) A luenberger-type observer for the am2 model. Journal of Process control 32:117–126

    Article  CAS  Google Scholar 

  • Dimitrova N, Krastanov M (2014) Model-based optimization of biogas production in an anaerobic biodegradation process. Computers & Mathematics with Applications 68(9):986–993

    Article  Google Scholar 

  • Dollé G, Duran O, Feyeux N, Frénod E, Giacomini M, Prud’Homme C (2016) Mathematical modeling and numerical simulation of a bioreactor landfill using feel++. ESAIM: Proceedings and Surveys, 55 , 83–110,

  • Fekih-Salem R, Harmand J, Lobry C, Rapaport A, Sari T (2013) Extensions of the chemostat model with flocculation. Journal of Mathematical Analysis and Applications 397(1):292–306

    Article  Google Scholar 

  • Gadekallu TR, Rajput DS, Reddy MPK, Lakshmanna K, Bhattacharya S, Singh S, Alazab M (2021) A novel pca-whale optimization-based deep neural network model for classification of tomato plant diseases using gpu. Journal of Real-Time Image Processing 18:1383–1396

    Article  Google Scholar 

  • Haefner JW (2005) Modeling biological systems:: principles and applications. Springer Science & Business Media

  • Hafstein SF (2019) Numerical ode solvers and integration methods in the computation of cpa lyapunov functions. 2019 18th european control conference (ecc) (pp. 1136–1141)

  • Hassam S, Ficara E, Leva A, Harmand J (2015) A generic and systematic procedure to derive a simplified model from the anaerobic digestion model no. 1 (adm1). Biochemical Engineering Journal 99:193–203

    Article  CAS  Google Scholar 

  • Hmissi M, Harmand J, Alcaraz-Gonzalez V, Shayeb H (2018) Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester. Water Science and Technology 77(4):948–959

    Article  CAS  Google Scholar 

  • Huang R, Ma C, Ma J, Huangfu X, He Q (2021) Machine learning in natural and engineered water systems. Water Research 205:117666

    Article  CAS  Google Scholar 

  • Kumar R, Baz A, Alhakami H, Alhakami W, Agrawal A, Khan RA (2021) A hybrid fuzzy rule-based multi-criteria framework for sustainable-security assessment of web application. Ain Shams Engineering Journal 12(2):2227–2240

    Article  Google Scholar 

  • Martín MP, Candler GV (2006) A parallel implicit method for the direct numerical simulation of wall-bounded compressible turbulence. Journal of Computational Physics 215(1):153–171

    Article  Google Scholar 

  • Mehrdad SM, Abbasi M, Yeganeh B, Kamalan H (2021) Prediction of methane emission from landfills using machine learning models. Environmental Progress & Sustainable Energy 40(4):e13629

    Article  CAS  Google Scholar 

  • Monod J (1950) La technique de culture continue: theorie et applications. Selected Papers in Molecular Biology by Jacques Monod 79:390–410

    CAS  Google Scholar 

  • Ouchtout S, Mghazli Z, Harmand J, Rapaport A, Belhachmi Z (2020) Analysis of an anaerobic digestion model in landfill with mortality term. Communications on Pure & Applied Analysis 19(4):2333

    Article  Google Scholar 

  • Pinder GF, Gray WG (2008) Essentials of multiphase flow and transport in porous media. John Wiley & Sons

    Book  Google Scholar 

  • Rapaport A, Nidelet T, El Aida S, Harmand J (2020) About biomass overyielding of mixed cultures in batch processes. Mathematical biosciences 322:108322

    Article  CAS  Google Scholar 

  • Rouez M (2008) Dégradation anaérobie de déchets solides: Caractérisation, facteurs d’influence et modélisations. Laboratoire de Génie Civil et d’Ingénierie Environnementale, Lyon, Institut National des Sciences Appliquées Docteur, p 259

    Google Scholar 

  • Zamrisham NAF, Wahab AMA, Zainal A, Karadag D, Bhutada D, Suhartini S, Idrus S (2023) State of the art in anaerobic treatment of land-fill leachate: A review on integrated system, additive substances, and machine learning application. Water 15(7):1303

    Article  CAS  Google Scholar 

  • Zhu M, Wang J, Yang X, Zhang Y, Zhang L, Ren H, Ye L (2022) A review of the application of machine learning in water quality evaluation. Eco-Environment & Health,

Download references

Funding

This study is supported via funding from Prince sattam bin Abdulaziz University project number (PSAU/2024/R/1445).

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed this manuscript and approved the final version.

Corresponding author

Correspondence to Muhammad Sulaiman.

Ethics declarations

Competing interests

Authors of this manuscript declare that they have no conflict of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, M., Salman, M., Laouini, G. et al. Mathematical models for fluid flow in porous media with machine learning techniques for landfill waste leachate. Stoch Environ Res Risk Assess (2024). https://doi.org/10.1007/s00477-024-02684-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00477-024-02684-5

Keywords

Navigation