Skip to main content
Log in

An adjusted parameter estimation for spatial regression with spatial confounding

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Spatial regression models are often used to analyze the ecological and environmental data sets over a continuous spatial support. Issues of collinearity among covariates have been widely discussed in modeling, but only rarely in discussing the relationship between covariates and unobserved spatial random processes. Past researches have shown that ignoring this relationship (or, spatial confounding) would have significant influences on the estimation of regression parameters. To overcome this problem, an idea of restricted spatial regression is used to ensure that the unobserved spatial random process is orthogonal to covariates, but the related inferences are mainly based on Bayesian frameworks. In this paper, an adjusted generalized least squares estimation method is proposed to estimate regression coefficients, resulting in estimators that perform better than conventional methods. Under the frequentist framework, statistical inferences of the proposed methodology are justified both in theories and via simulation studies. Finally, an application of a water acidity data set in the Blue Ridge region of the eastern U.S. is presented for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Besag J, York JC, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann Inst Stat Math 43:1–59

    Article  Google Scholar 

  • Brunton LA, Alexander N, Wint W, Ashton A, Broughan JM (2017) Using geographically weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England and Wales. Stoch Environ Res Risk Assess 31:339–352

    Article  Google Scholar 

  • Clayton DG, Bernardinelli L, Montomoli C (1993) Spatial correlation in ecological analysis. Int J Epidemiol 22:1193–1202

    Article  CAS  Google Scholar 

  • Cressie N (1993) Statistics for spatial data, revised edn. Wiley, New York

    Google Scholar 

  • Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J R Stat Soc Ser B Stat Methodol 70:209–226

    Article  Google Scholar 

  • Gelman A, Tuerlinckx F (2000) Type S error rates for classical and Bayesian single and multiple comparison procedures. Comput Stat 15:373–390

    Article  Google Scholar 

  • Gu C (2002) Smoothing spline ANOVA models. Springer, New York

    Book  Google Scholar 

  • Hanks EM, Schliep EM, Hooten MB, Hoeting JA (2015) Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification. Environmetrics 26:243–254

    Article  Google Scholar 

  • Harville DA (1997) Matrix algebra from a statistician’s perspective. Springer, New York

    Book  Google Scholar 

  • Hodges JS, Reich BJ (2010) Adding spatially-correlated errors can mess up the fixed effect you love. Am Stat 64:325–334

    Article  Google Scholar 

  • Hoeting JA, Davis RA, Merton AA, Thompson SE (2006) Model selection for geostatistical models. Ecol Appl 16:87–98

    Article  Google Scholar 

  • Huang HC, Chen CS (2007) Optimal geostatistical model selection. J Am Stat Assoc 102:1009–1024

    Article  CAS  Google Scholar 

  • Hughes J (2015) copCAR: a flexible regression model for areal data. J Comput Graph Stat 24:733–755

    Article  Google Scholar 

  • Hughes J, Haran M (2013) Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. J R Stat Soc Ser B Stat Methodol 75:139–159

    Article  Google Scholar 

  • Matérn B (2013) Spatial variation. Springer, Berlin

    Google Scholar 

  • Nikoloulopoulos AK (2016) Efficient estimation of high-dimensional multivariate normal copula models with discrete spatial responses. Stoch Environ Res Risk Assess 30:493–505

    Article  Google Scholar 

  • Paciorek CJ (2010) The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Stat Sci 25:107–125

    Article  Google Scholar 

  • Page GL, Liu Y, He Z, Sun D (2017) Estimation and prediction in the presence of spatial confounding for spatial linear models. Scand J Stat 44:780–797

    Article  Google Scholar 

  • Reich BJ, Hodges JS, Zadnik V (2006) Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics 62:1197–1206

    Article  Google Scholar 

  • Tzeng S, Huang HC (2018) Resolution adaptive fixed rank kriging. Technometrics 60:198–208

    Article  Google Scholar 

  • Wood SN (2003) Thin plate regression splines. J R Stat Soc Ser B Stat Methodol 65:95–114

    Article  Google Scholar 

  • Zadnik V, Reich BJ (2006) Analysis of the relationship between socioeconomic factors and stomach cancer incidence in Slovenia. Neoplasma 53:103–110

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Editor, an associate editor, and two anonymous referees for their insightful and constructive comments, which have greatly improved the presentation of the article. This work was supported by the Ministry of Science and Technology of Taiwan under Grants MOST 106-2118-M-018-003-MY2 and MOST 106-2811-M-018-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Shu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Let \(\varvec{A}=\sigma ^2_{\varepsilon }\varvec{I}\), \(\varvec{U}=\sigma ^2_w(\varvec{I}-\varvec{P}_{\varvec{X}}), \varvec{C}=\varvec{R}_{\varvec{W}}(\phi _w,\nu _w)\), and \(\varvec{V}=(\varvec{I}-\varvec{P}_{\varvec{X}})'\), then \(\varvec{\Phi }=\varvec{A}+\varvec{U}\varvec{C}\varvec{V}\). Applying the Sherman–Morrison–Woodbury formula (see, e.g., Harville 1997), we have \(\varvec{\Phi }^{-1}=\varvec{A}^{-1}-\varvec{A}^{-1}\varvec{U}\left( \varvec{C}^{-1} +\varvec{V}\varvec{A}^{-1}\varvec{U}\right) ^{-1}\varvec{V}\varvec{A}^{-1}\). Using the fact \(\varvec{X}^{\prime }(\varvec{I}-\varvec{P}_{\varvec{X}})=\varvec{0}\) together with the Sherman–Morrison–Woodbury formula of \(\varvec{\Phi }^{-1}\), we obtain

$$\begin{aligned}&\varvec{X}^{\prime }\varvec{\Phi }^{-1} =\varvec{X}^{\prime }\left\{ \frac{1}{\sigma ^2_{\varepsilon }}\varvec{I} - \frac{\sigma ^2_{w}}{\sigma ^2_{\varepsilon }}(\varvec{I}-\varvec{P}_{\varvec{X}})\right. \\&\qquad \left. \left( \varvec{R}_{\varvec{W}}^{-1}+\frac{\sigma ^2_w}{\sigma ^2_{\varepsilon }} (\varvec{I}-\varvec{P}_{\varvec{X}})'(\varvec{I}-\varvec{P}_{\varvec{X}})\right) ^{-1}\right. \\&\qquad \left. (\varvec{I}-\varvec{P}_{\varvec{X}})' \frac{1}{\sigma ^2_{\varepsilon }} \varvec{I}\right\} \\&\quad = \frac{1}{\sigma ^2_{\varepsilon }}\varvec{X}^{\prime }. \end{aligned}$$

It implies that

$$\begin{aligned} \hat{\varvec{\beta }}_{RSR}=\left( \varvec{X}^{\prime }\varvec{\Phi }^{-1}\varvec{X}\right) ^{-1} \varvec{X}^{\prime }\varvec{\Phi }^{-1}\varvec{Y} =\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{Y}. \end{aligned}$$

This completes the proof.

Proof of Theorem 2

From Theorem 1, we have \(\hat{\varvec{\beta }}_{RSR}=(\varvec{X}^{\prime }\varvec{X})^{-1}\varvec{X}^{\prime }\varvec{Y}\). Therefore,

$$\begin{aligned}&E\left[ \hat{\varvec{\beta }}_{RSR}-\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1} \varvec{X}^{\prime }\varvec{W}\right] \\&\quad =E\left[ \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{Y}-\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{W}\right] \\&\quad =E\left[ \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\left( \varvec{X} \varvec{\beta }_{SR}+\varvec{W}+\varvec{\varepsilon }\right) -\left( \varvec{X}^{\prime } \varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{W}\right] \\&\quad =E\left[ \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{X} \varvec{\beta }_{SR}+\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{\varepsilon }\right] \\&\quad =\varvec{\beta }_{SR}+E\left[ \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1} \varvec{X}^{\prime }\right] E\left[ \varvec{\varepsilon }\right] \\&\quad =\varvec{\beta }_{SR}, \end{aligned}$$

where the fourth equality follows from the measurement errors \(\varvec{\varepsilon }\) are independent of \(\varvec{X}\). This completes the proof.

Proof of Theorem 3

Let \(\varvec{A}=\left( \varvec{X}^{\prime }\varvec{\Phi }^{-1}\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{\Phi }^{-1}\), we have

$$\begin{aligned} \hat{\varvec{\beta }}_{Adj}=\varvec{A}\varvec{Y}-\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X}^{\prime }\varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}} \varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p. \end{aligned}$$

It means that \(\hat{\varvec{\beta }}_{Adj}\) is a linear combination of \(\varvec{Y}\). Thus, the sampling distribution of \(\hat{\varvec{\beta }}_{Adj}\) given the covariates \(\varvec{X}\) is distributed as Gaussian with mean vector and covariance matrix being

$$\begin{aligned}&E\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] =\left( \varvec{X}^{\prime } \varvec{\Phi }^{-1}\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{\Phi }^{-1}E[\varvec{Y}|\varvec{X}]\\&\qquad -\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X}^{\prime } \varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\\&\quad =\left( \varvec{X}^{\prime }\varvec{\Phi }^{-1}\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{\Phi }^{-1}\\&\qquad \left( \varvec{X}\varvec{\beta }_{RSR}+ \rho \frac{\sigma _w}{\sigma _x}(\varvec{I}-\varvec{P}_{\varvec{X}}) \varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\right) \\&\qquad -\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X}^{\prime } \varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\\&\quad =\varvec{\beta }_{RSR}+\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\rho \frac{\sigma _w}{\sigma _x}(\varvec{I}-\varvec{P}_{\varvec{X}}) \varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\\&\qquad -\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X} '\varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\\&\quad =\varvec{\beta }_{RSR}-\rho \frac{\sigma _w}{\sigma _x} \varvec{M}_{adj}(\varvec{X}^{\prime }\varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}} \varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p \end{aligned}$$

and

$$\begin{aligned}&Var\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] \\&\quad =Var\left[ \varvec{A} \varvec{Y}-\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj} (\varvec{X}^{\prime }\varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}} \varvec{x}_p\big |\varvec{X}\right] \\&\quad =\varvec{A}Var[\varvec{Y}|\varvec{X}]\varvec{A}'\\&\quad =\varvec{A}\left[ \sigma ^2_{w}(1-\rho ^2)(\varvec{I}-\varvec{P}_{\varvec{X}}) \varvec{R}_{\varvec{W}}(\varvec{I}-\varvec{P}_{\varvec{X}})'+\sigma ^2_{\varepsilon } \varvec{I}\right] \varvec{A}'\\&\quad =\sigma ^2_{w}(1-\rho ^2)\varvec{A}\left( \varvec{I}-\varvec{P}_{\varvec{X}}\right) \varvec{R}_{\varvec{W}}\left[ \varvec{A}\left( \varvec{I}-\varvec{P}_{\varvec{X}}\right) \right] ' +\sigma ^2_{\varepsilon }\varvec{A}\varvec{A}'\\&\quad =\sigma ^2_{\varepsilon }\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}, \end{aligned}$$

respectively. In \(E\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] \), the third equality follows from \(\varvec{X}^{\prime }\varvec{\Phi }^{-1}= \frac{1}{\sigma ^2_{\varepsilon }}\varvec{X}^{\prime }\) of Theorem 1 and the fourth equality follows from \(\varvec{X}^{\prime }(\varvec{I}-\varvec{P}_{\varvec{X}})=\varvec{0}\). In \(Var\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] \), the last equality follows from \(\varvec{A}=\left( \varvec{X}^{\prime }\varvec{\Phi }^{-1}\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{\Phi }^{-1}=(\varvec{X}^{\prime }\varvec{X})^{-1}\varvec{X}^{\prime }\) and \(\varvec{A}\left( \varvec{I}-\varvec{P}_{\varvec{X}}\right) =(\varvec{X}^{\prime }\varvec{X})^{-1} \varvec{X}^{\prime }\left( \varvec{I}-\varvec{P}_{\varvec{X}}\right) =\varvec{0}\) . This completes the proof.

Proof of Theorem 4

From Theorem 3 and (12), we have

$$\begin{aligned} E\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right]& = \varvec{\beta }_{RSR} -\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X}^{\prime } \varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p \end{aligned}$$

and

$$\begin{aligned} \varvec{\beta }_{RSR}=\varvec{\beta }_{SR}+(\varvec{X}^{\prime }\varvec{X})^{-1}\varvec{X}^{\prime }\varvec{W}. \end{aligned}$$

Because \(\varvec{W}\) in the above equation is a random vector, the bias of \(\hat{\varvec{\beta }}_{Adj}\) is given by

$$\begin{aligned}&Bias\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] \\&\quad =E\left\{ E\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] -\varvec{\beta }_{SR}\big |\varvec{X}\right\} \\&\quad =E\left\{ \varvec{\beta }_{RSR}-\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X}^{\prime }\varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}} \varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\right. \\&\qquad \qquad \left. -\varvec{\beta }_{SR}\big |\varvec{X}\right\} \\&\quad =E\left\{ \varvec{\beta }_{RSR}-\varvec{\beta }_{SR}\big |\varvec{X}\right\} \\&\qquad -\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X}^{\prime } \varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\\&\quad =(\varvec{X}^{\prime }\varvec{X})^{-1}\varvec{X}^{\prime }E\left[ \varvec{W}|\varvec{X}\right] \\&\qquad -\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X}^{\prime } \varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\\&\quad =\rho \frac{\sigma _w}{\sigma _x}(\varvec{X}^{\prime }\varvec{X})^{-1} \varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\\&\qquad -\rho \frac{\sigma _w}{\sigma _x}\varvec{M}_{adj}(\varvec{X}^{\prime } \varvec{X})^{-1}\varvec{X}^{\prime }\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\\&\quad =\rho \frac{\sigma _w}{\sigma _x}\left( \varvec{I}- \varvec{M}_{adj}\right) \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p, \end{aligned}$$

where the fifth equality follows from (13). This completes the proof.

Proof of Corollary 1

Because \(Bias\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] =\rho \frac{\sigma _w}{\sigma _x}\left( \varvec{I}-\varvec{M}_{adj} \right) \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p,\) the desired result for \(\rho =0\) is trivial. Moreover, if \(\varvec{R}_{\varvec{x}}=\varvec{R}_{\varvec{W}},\) we have \(\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}=\varvec{I}\) and thus \(Bias\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] =\rho \frac{\sigma _w}{\sigma _x}\left( \varvec{I}-\varvec{M}_{adj}\right) \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{x}_p.\) Because \(\varvec{I}-\varvec{M}_{adj}=\hbox {diag}(1,\dots ,1,0)\) and \(\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{x}_p=(0,\dots ,0,1),'\) we obtain the desired result. This completes the proof.

Proof of Corollary 2

Since \(MSE\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] =tr\left\{ Bias \left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] Bias^{'}\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] \right\} + tr\left\{ Var\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] \right\}, \) it follows from (18) and (19) that

$$\begin{aligned}&MSE\left[ \hat{\varvec{\beta }}_{Adj}|\varvec{X}\right] =\rho ^2 \frac{\sigma ^2_w}{\sigma ^2_x}tr\\&\qquad \left\{ \left( \left( \varvec{I}-\varvec{M}_{adj}\right) \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\right) \right. \\&\qquad \quad \left. \left( \left( \varvec{I}-\varvec{M}_{adj}\right) \left( \varvec{X}^{\prime } \varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}}\varvec{x}_p\right) '\right\} \\&\qquad \quad +\sigma ^2_{\varepsilon }tr\left\{ \left( \varvec{X}^{\prime }\varvec{X} \right) ^{-1}\right\} \\&\quad =\rho ^2 \frac{\sigma ^2_w}{\sigma ^2_x}tr\\&\qquad \left\{ \left( \varvec{I}-\varvec{M}_{adj}\right) \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{B}\varvec{X}\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\left( \varvec{I} -\varvec{M}_{adj}\right) \right\} \\&\qquad \quad +\sigma ^2_{\varepsilon }tr\left\{ \left( \varvec{X}^{\prime }\varvec{X}\right) ^ {-1}\right\} \\&\quad =\rho ^2 \frac{\sigma ^2_w}{\sigma ^2_x}tr\left\{ \left( \varvec{I}-\varvec{M}_{adj}\right) \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \varvec{B}\varvec{X}\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\right\} \\&\qquad +\sigma ^2_{\varepsilon }tr\left\{ \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\right\} , \end{aligned}$$

where \(\varvec{B}=\varvec{R}^{1/2}_{\varvec{W}}\varvec{R}^{-1/2}_{\varvec{x}} \varvec{x}_p\varvec{x}'_p\varvec{R}^{-1/2'}_{\varvec{x}}\varvec{R}^{1/2'}_{\varvec{W}}.\) This completes the proof.

Proof of\((\varvec{X}^{\prime }\varvec{\Sigma }^{-1}_{\varvec{Y}}\varvec{X})^{-1}=\sigma ^2_{\varepsilon } \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}+\sigma ^2_w\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1} \varvec{X}^{\prime }\varvec{R}_{\varvec{W}}\varvec{X}\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}.\) Let \(\varvec{A}=\sigma ^2_{\varepsilon }\varvec{I},\)\(\varvec{U}=\varvec{V}=\varvec{I},\) and \(\varvec{C}=\sigma ^2_w\varvec{R}_{\varvec{W}},\) then we have \(\varvec{\Sigma _Y}=\varvec{A}+\varvec{U}\varvec{C}\varvec{V}.\) Applying the Sherman–Morrison–Woodbury formula (see, e.g., Harville 1997), it implies that

$$\begin{aligned} \varvec{\Sigma _Y}^{-1}& = \varvec{A}^{-1}-\varvec{A}^{-1}\varvec{U}\left( \varvec{C}^{-1} +\varvec{V}\varvec{A}^{-1}\varvec{U}\right) ^{-1}\varvec{V}\varvec{A}^{-1}\\& = \left( \sigma ^2_{\varepsilon }\varvec{I}\right) ^{-1}-\left( \sigma ^2_{\varepsilon }\varvec{I}\right) ^{-1}\left[ \left( \sigma ^2_w \varvec{R}_{\varvec{W}}\right) ^{-1}\right. \\&\quad\left. +\left( \sigma ^2_{\varepsilon }\varvec{I} \right) ^{-1}\right] ^{-1}\left( \sigma ^2_{\varepsilon }\varvec{I}\right) ^{-1}\\& = \frac{1}{\sigma ^2_{\varepsilon }}\varvec{I}- \frac{1}{\sigma ^4_{\varepsilon }}\left[ \left( \sigma ^2_w\varvec{R}_{\varvec{W}} \right) ^{-1}+\left( \sigma ^2_{\varepsilon }\varvec{I}\right) ^{-1}\right] ^{-1}. \end{aligned}$$

Similarly, let \(\varvec{A}^*= \frac{1}{\sigma ^2_{\varepsilon }}\varvec{X}^{\prime }\varvec{X},\)\(\varvec{U}^*=- \frac{1}{\sigma ^4_{\varepsilon }}\varvec{X}^{\prime },\)\(\varvec{C}^*=\left[ \left( \sigma ^2_w\varvec{R}_{\varvec{W}}\right) ^{-1} +\left( \sigma ^2_{\varepsilon }\varvec{I}\right) ^{-1}\right] ^{-1},\) and \(\varvec{V}^*=\varvec{X},\) then we have \(\varvec{X}^{\prime }\varvec{\Sigma _Y}^{-1}\varvec{X}=\varvec{A}^*+\varvec{U}^*\varvec{C}^*\varvec{V}^*.\) Applying the Sherman-Morrison-Woodbury formula again, it implies that

$$\begin{aligned}&\left( \varvec{X}^{\prime }\varvec{\Sigma _Y}^{-1}\varvec{X}\right) ^{-1}\\&\quad ={\varvec{A}^*}^{-1} -{\varvec{A}^*}^{-1}\varvec{U}^*\left( {\varvec{C}^*}^{-1}+\varvec{V}^*{\varvec{A}^*}^{-1} \varvec{U}^*\right) ^{-1}\varvec{V}^*{\varvec{A}^*}^{-1}\\&\quad =\left( \frac{1}{\sigma ^2_{\varepsilon }}\varvec{X}^{\prime }\varvec{X} \right) ^{-1}-\left( \frac{1}{\sigma ^2_{\varepsilon }} \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\left( - \frac{1}{\sigma ^4_{\varepsilon }}\varvec{X}^{\prime }\right) \\&\qquad \left[ \left( \sigma ^2_w\varvec{R}_{\varvec{W}}\right) ^{-1}+\left( \sigma ^2_{\varepsilon }\varvec{I}\right) ^{-1}+\varvec{X}\left( \frac{1}{\sigma ^2_{\varepsilon }}\varvec{X}^{\prime }\varvec{X}\right) ^{-1}\right. \\&\qquad \left. \left( - \frac{1}{\sigma ^4_{\varepsilon }}\varvec{X}^{\prime }\right) \right] ^{-1} \varvec{X}\left( \frac{1}{\sigma ^2_{\varepsilon }}\varvec{X}^{\prime } \varvec{X}\right) ^{-1}\\&\quad =\sigma ^2_{\varepsilon }\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}+\left( \varvec{X} '\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\\&\qquad \left[ \left( \sigma ^2_w\varvec{R}_{\varvec{W}}\right) ^{-1}+ \frac{1}{\sigma ^2_{\varepsilon }}\varvec{I}\right. \\&\qquad \left. - \frac{1}{\sigma ^2_{\varepsilon }}\varvec{X}\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime } \right] ^{-1}\varvec{X}\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\\&\quad =\sigma ^2_{\varepsilon }\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}+\left( \varvec{X}^{\prime } \varvec{X}\right) ^{-1}\varvec{X}^{\prime }\\&\qquad \left[ \left( \sigma ^2_w\varvec{R}_{\varvec{W}}\right) ^{-1}+ \frac{1}{\sigma ^2_{\varepsilon }}\varvec{I}\right. \\&\qquad \left. - \frac{1}{\sigma ^2_{\varepsilon }} \varvec{X}\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{X}\varvec{X}^{\prime }\left( \varvec{X} \varvec{X}^{\prime }\right) ^{-1}\right] ^{-1}\varvec{X}\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\\&\quad = \sigma ^2_{\varepsilon }\left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}+\sigma ^2_w \left( \varvec{X}^{\prime }\varvec{X}\right) ^{-1}\varvec{X}^{\prime }\varvec{R}_{\varvec{W}}\varvec{X}\left( \varvec{X} '\varvec{X}\right) ^{-1}. \end{aligned}$$

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiou, YH., Yang, HD. & Chen, CS. An adjusted parameter estimation for spatial regression with spatial confounding. Stoch Environ Res Risk Assess 33, 1535–1551 (2019). https://doi.org/10.1007/s00477-019-01716-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01716-9

Keywords

Navigation