Skip to main content
Log in

Birnbaum–Saunders functional regression models for spatial data

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

With the advancement of technology, data are often recorded continuously and instantaneously. Since the early nineties, this kind of observations have been described by models for functional data. Usually a large set of records for each individual in the sample become in a curve (by using some smoothing method) which is considered as a realization of a random function. In functional regression models these curves are used to establish whether there is a relation with an scalar response (functional regression model with scalar response). If two or more sets of curves are obtained for each individual, more complex functional regression models can be established. In particular, in geosciences, where spatial statistics is a primary tool, functional regression is becoming more frequent. Therefore, it is of interest to develop methodologies for spatially correlated functional data. Also in geosciences, as well as in other areas, it is common that the response variables follow positive skew distributions (for example, those obtained in studies about the level of chemical elements in soil or air). Hence, the standard geostatistical assumption of Gaussian errors, or at least of symmetry, is inappropriate. This type of variables, in non-spatial contexts, have been successfully described by the Birnbaum–Saunders distribution, becoming its modeling a very active research field. However, the use of this distribution in the treatment of geostatistical data has only been applied under stationarity. This paper develops a Birnbaum–Saunders model for geostatistical data considering a non-stationary process using functional covariates. The corresponding parameters are estimated by maximum likelihood and their performance is evaluated through Monte Carlo simulations. We illustrate the proposed model with two geo-referenced data sets, which shows its potential applications and a better performance in relation to the Gaussian model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balakrishnan N, Leiva V, Sanhueza A, Cabrera E (2009) Mixture inverse Gaussian distribution and its transformations, moments and applications. Statistics 43:91–104

    Google Scholar 

  • Boyhan G (2013) Agricultural statistical data using stata. CRC Press, Boca Raton

    Google Scholar 

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45:11–22

    Google Scholar 

  • Carranza E (2009) Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier, Oxford

    Google Scholar 

  • Clarkson D, Fraley C, Gu C, Ramsay J (2005) S+ functional data analysis: user’s manual for windows. Springer, New York

    Google Scholar 

  • Cuevas A, Febrero M, Fraiman R (2004) An ANOVA test for functional data. Comput Stat Data Anal 47:111–122

    Google Scholar 

  • de Oliveira V, Kedem B, Short D (1997) Bayesian prediction of transformed Gaussian random fields. J Am Stat Assoc 92:1422–1433

    Google Scholar 

  • Delicado P (2007) Functional k-sample problem when data are density functions. Comput Stat 22:391–410

    Google Scholar 

  • Diggle PJ, Ribeiro PJ (2007) Model-based geoestatistics. Springer, New York

    Google Scholar 

  • Escabias M, Aguilera A, Valderrama M (2004) Principal components estimation of functional logistic regression: discussion of two different approaches. J Nonparametr Stat 16:365–384

    Google Scholar 

  • Febrero-Bande M, de La Fuente O (2014) Functional regression models with temporal and/or spatial dependence. In: Bongiorno EG, Salinelli E, Goia A, Vieu P (eds) Contributions in infinite-dimensional statistics and related topics, vol 19. Società Editrice Esculapio, Bologna, pp 107–110

    Google Scholar 

  • Ferraty F, Vieu P (2003) Curves discrimination: a nonparametric functional approaches. Comput Stat Data Anal 44:161–173

    Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    Google Scholar 

  • Ferreira M, Gomes MI, Leiva V (2012) On an extreme value version of the Birnbaum–Saunders distribution. REVSTAT Stat J 10:181–210

    Google Scholar 

  • Fillela I, Penuelas J (1994) The red edge position and shape as indicator of plant chlorophyll content, biomass and hydric status. J Remote Sens 15:1459–1470

    Google Scholar 

  • Galindo J (2004) Development of an explanatory model of the growth and production of pea based on edaphic-environmental variables. Ph.D. Thesis. Universidad Nacional de Colombia, Colombia (in Spanish)

  • Garcia-Papani F, Leiva V, Uribe-Opazo MA, Aykroyd RG (2018a) Birnbaum–Saunders spatial regression models: diagnostics and application to chemical data. Chemom Intel Lab Syst 177:114–128

    CAS  Google Scholar 

  • Garcia-Papani F, Uribe-Opazo MA, Leiva V, Aykroyd RG (2017) Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stoch Environ Res Risk Assess 31:105–124

    Google Scholar 

  • Garcia-Papani F, Leiva V, Ruggeri F, Uribe-Opazo MA (2018b) Kriging with external drift in a Birnbaum–Saunders geostatistical model. Stoch Environ Res Risk Assess 32:1517–1530

    Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2011) Ordinary kriging for function value spatial data. Environ Ecol Stat 18:411–426

    Google Scholar 

  • Giraldo R, Molina A, Torres-Leon JL, Acosta M, Martinez S (2016) Study of the spectral signatures of oil palms affected with letal wilt, using functional data analysis. Palmas 39:131–139

    Google Scholar 

  • Graler B (2014) Modelling skewed spatial random fields through the spatial vine copula. Comput Stat Data Anal 10:87–102

    Google Scholar 

  • Helsel D, Lee L (2005) Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput Geosci 31:1241–1248

    Google Scholar 

  • Huang S, Qu Y (2006) The loss in power when the test of differential expression is performed under a wrong scale. J Comput Biol 13:786–797

    CAS  Google Scholar 

  • Huerta M, Leiva V, Liu S, Rodriguez M, Villegas D (2019) On a partial least squares regression model for asymmetric data with a chemical application in mining. Chemom Intell Lab Syst 190:55–68

    CAS  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2. Wiley, New York

    Google Scholar 

  • Keirstead J (2012) Gaussian process regression with R. http://www.jameskeirstead.ca/blog/gaussian-process-regression-with-r/. Accessed June 2018

  • Kokoszka P, Reimherr M (2019) Some recent developments in inference for geostatistical functional data. Revista Colombiana de Estadística 42:101–122

    Google Scholar 

  • Kundu D, Balakrishnan N, Jamalizadeh A (2010) Bivariate Birnbaum–Saunders distribution and associate inference. J Multivar Anal 101:113–125

    Google Scholar 

  • Lange K (2001) Numerical analysis for statisticians. Springer, New York

    Google Scholar 

  • Leiva V (2016) The Birnbaum–Saunders distribution. Academic Press, New York

    Google Scholar 

  • Leiva V, Marchant C, Ruggeri F, Saulo H (2015) A criterion for environmental assessment using Birnbaum–Saunders attribute control charts. Environmetrics 2:463–476

    Google Scholar 

  • Leurgans S, Moyeed R, Silverman B (1993) Canonical correlation analysis when the data are curves. J R Stat Soc B 55:725–740

    Google Scholar 

  • Malfait N, Ramsay J (2003) The historical functional linear model. Can J Stat 31:115–128

    Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA (2016a) A multivariate log-linear model for Birnbaum–Saunders distributions. IEEE Trans Reliab 65:816–827

    Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA, Vivanco JF (2016b) Diagnostics in multivariate generalized Birnbaum–Saunders regression models. J Appl Stat 43:2829–2849

    Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA, Liu S (2018) Robust multivariate control charts based on Birnbaum–Saunders distributions. J Stat Comput Simul 88:182–202

    Google Scholar 

  • Marchant C, Leiva V, Christakos G, Cavieres MA (2019) Monitoring urban environmental pollution by bivariate control charts: new methodology and case study in Santiago, Chile. Environmetrics (in press)

  • Nocedal J, Wright S (1999) Numerical optimization. Springer, New York

    Google Scholar 

  • Pezulli S, Silverman B (1993) Some properties of smoothed components analysis for functional data. Comput Stat 8:1–16

    Google Scholar 

  • Quinn G, Keough M (2002) Experimental design and data analysis for biologist. Cambridge University Press, Cambridge

    Google Scholar 

  • Core Team R (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramsay J, Silverman B (2005) Functional data analysis. Springer, New York

    Google Scholar 

  • Rasmussen J, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    Google Scholar 

  • Reimman C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. Wiley, New York

    Google Scholar 

  • Renard P, Demougeot-Renard H, Froidevaux R (2005) Geostatistics for environmental application. Springer, New York

    Google Scholar 

  • Ribeiro P, Diggle P (2015) geoR: analysis of geostatistical data. R package version 1(7–5):1

    Google Scholar 

  • Rieck JR, Nedelman JR (1991) A log-linear model for the Birnbaum–Saunders distribution. Technometrics 3:51–60

    Google Scholar 

  • Rimstad K, Omre H (2014) Skew–Gaussian random fields. Spat Stat 10:43–62

    Google Scholar 

  • Saulo H, Leiva V, Ziegelmann F, Marchant C (2013) A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data. Stoch Environ Res Risk Assess 27:147–149

    Google Scholar 

  • Schabenberger O, Gotway C (2005) Statistical methods for spatial data analysis. Chapman and Hall, London

    Google Scholar 

  • Shen Q, Faraway J (2004) An F test for linear models with functional responses. Stat Sin 14:1239–1257

    Google Scholar 

  • Silverman B (1995) Incorporating parametric effects into functional principal components. J R Stat Soc 57:673–689

    Google Scholar 

  • Villegas C, Paula GA, Leiva V (2011) Birnbaum–Saunders mixed models for censored reliability data analysis. IEEE Trans Reliab 60:748–758

    Google Scholar 

  • Yao F, Muller H, Wang J (2005) Functional linear regression for longitudinal data. Ann Stat 33:2873–2903

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and four reviewers very much for their constructive comments on an earlier version of this manuscript which resulted in this improved version. This research was supported partially by grant “Fondecyt 1160868” from the National Commission for Scientific and Technological Research of the Chilean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Giraldo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 Score vector

The elements of the \(K_{\beta }\times 1\) score vector given in (13) are detailed as

$$\begin{aligned} \frac{\partial \ell ({\varvec{\theta }})}{\partial \alpha }&= \frac{\partial }{\partial \alpha }\left( -n\log (\alpha )-\frac{2}{\alpha ^2}{\varvec{V}}^\top {\varvec{\varGamma }}^{-1}{\varvec{V}}\right) = -\frac{n}{\alpha } + \frac{4}{\alpha ^3}\varvec{V}^\top {\varvec{\varGamma }}^{-1}{\varvec{V}},\\ \frac{\partial \ell ({\varvec{\theta }})}{\partial \beta _0}&= \frac{\partial }{\partial {\beta _0}}\left( -\frac{2}{\alpha ^2}{\varvec{V}}^\top {\varvec{\varGamma }}^{-1}{\varvec{V}} + \sum _{i=1}^{n}\log \left( \cosh \left( \frac{y_i - \mu _i}{2}\right) \right) \right) \\&= \frac{2}{\alpha ^2}{\varvec{W}}^\top {\varvec{\varGamma }}^{-1}{\varvec{V}} -\frac{1}{2}\sum _{i=1}^{n}\tanh \left( \frac{y_i -\mu _i}{2}\right) ,\\ \frac{\partial \ell ({\varvec{\theta }})}{\partial {\varvec{b}}_{j}}&=\frac{\partial }{\partial { {\varvec{b}}_j}}\left( -\frac{2}{\alpha ^2}{\varvec{V}}^\top {\varvec{\varGamma }}^{-1}{\varvec{V}} + \sum _{i=1}^{n}\log \left( \cosh \left( \frac{y_i - \mu _i}{2}\right) \right) \right) \\&= \frac{2}{\alpha ^2}({\varvec{z}}_j^\top {\varvec{W}})^\top {\varvec{\varGamma }}^{-1}{\varvec{V}} -\frac{1}{2}\sum _{i=1}^{n}z_{ij}\tanh \left( \frac{y_i -\mu _i}{2}\right) , \;{j = 1, \ldots , K_{\beta };} \\ \frac{\partial \ell ({\varvec{\theta }})}{\partial \phi }&=-\frac{1}{2}\text {tr}\left( {\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }\right) +\frac{2\phi }{\alpha ^2}{\varvec{V}}^\top {\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }{\varvec{\varGamma }}^{-1}{\varvec{V}}. \end{aligned}$$

where \(\text {tr}({\varvec{A}})\) denotes the trace of \({\varvec{A}}\); \({\varvec{W}} = (W_1, \ldots , W_n)^\top\), with \(W_i = \cosh ((y_i-\mu _i)/2)\), for \(i = 1, \ldots , n\); \({\varvec{V}} = (V_1, \ldots , V_n)^\top\) is defined in (12) and \(\mu _i={\varvec{z}}_i^\top {\varvec{\xi }}\), with \({\varvec{z}}_i\) being the ith row of the matrix \({\varvec{Z}}\) defined in (11).

1.2 Information matrix

For the BS functional regression model the Hessian matrix presented in (15) has elements expressed as

$$\begin{aligned} \ddot{{\varvec{\ell }}}(\alpha )&= \frac{n}{\alpha ^2} - \frac{12}{\alpha ^4}{\varvec{V}}^\top \varvec{\varGamma }^{-1}{\varvec{V}}\\ \ddot{{\varvec{\ell }}}(\alpha \beta _0)&= \frac{4}{\alpha ^3}{\varvec{W}}^\top \varvec{\varGamma }^{-1}{\varvec{V}}\\ \ddot{{\varvec{\ell }}}(\alpha \beta _0)&= \frac{4}{\alpha ^3}{\varvec{W}}^\top \varvec{\varGamma }^{-1}{\varvec{V}}\\ \ddot{{\varvec{\ell }}}(\alpha {\varvec{b}}_j)&= -\frac{4}{\alpha ^3}({\varvec{z}}_j^\top {\varvec{W}})^\top \varvec{\varGamma }^{-1}{\varvec{V}}\\ \ddot{{\varvec{\ell }}}(\alpha \phi )&= -\frac{4\phi }{\alpha ^3}{\varvec{V}}^\top \varvec{\varGamma }^{-1}\frac{\partial \varvec{\varGamma }}{\partial \phi }{\varvec{\varGamma }}^{-1}{\varvec{V}}\\ \ddot{{\varvec{\ell }}}(\beta _0) =&-\frac{1}{\alpha ^2}({\varvec{V}}^\top \varvec{\varGamma }^{-1}{\varvec{V}}) - \frac{1}{\alpha ^2}{\varvec{W}}^\top \varvec{\varGamma }^{-1}{\varvec{W}}\\&+\frac{1}{4}\sum _{i=1}^{n}\left( \text {sech}\left( \frac{y_i -\mu _i}{2}\right) \right) ^2\\ \ddot{{\varvec{\ell }}}(\beta _0{\varvec{b}}_j) =&-\frac{1}{\alpha ^2}({\varvec{V}}^\top \odot {\varvec{z}}_j^\top )\varvec{\varGamma }^{-1}{\varvec{V}} - \frac{1}{\alpha ^2}{\varvec{W}}^\top \varvec{\varGamma }^{-1}({\varvec{W}} \odot {\varvec{z}}_j)\\&+\frac{1}{4}\sum _{i=1}^{n}\left( \text {sech}\left( \frac{y_i -\mu _i}{2}\right) \right) ^{2}{\varvec{z}}_{ij}, \; j = 1, \ldots , K_{\beta };\\ \ddot{{\varvec{\ell }}}({\varvec{b}}_j) = \frac{{\partial }^2 \ell ({\varvec{\theta }})}{\partial {\varvec{b}}_l\partial \varvec{b_j}} =&-\frac{1}{\alpha ^2}({\varvec{V}}^\top \odot {\varvec{z}}_l^\top \odot {\varvec{z}}_j^\top )\varvec{\varGamma }^{-1}{\varvec{V}} - \frac{1}{\alpha ^2}({\varvec{W}}^\top \odot {\varvec{z}}_l^\top )\varvec{\varGamma }^{-1}({\varvec{W}} \odot {\varvec{z}}_j)\\&+\frac{1}{4}\sum _{i=1}^{n}\left( \text {sech}\left( \frac{y_i -\mu _i}{2}\right) \right) ^{2}{\varvec{z}}_{il}{\varvec{z}}_{ij}, \; l,j = 1, \ldots , K_{\beta };\\ \ddot{{\varvec{\ell }}}(\phi ) = -&\frac{1}{2}\text {tr}\left( -{\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }{\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi } + {\varvec{\varGamma }}^{-1}\frac{\partial ^2{\varvec{\varGamma }}}{\partial \phi ^2}\right) +\\&\frac{2}{\alpha ^2}{\varvec{V}}^\top \left( -{\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }{\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }{\varvec{\varGamma }}^{-1} \right. \\&\left. + {\varvec{\varGamma }}^{-1} \left( \frac{\partial ^2{\varvec{\varGamma }}}{\partial \phi ^2} {\varvec{\varGamma }}^{-1} - \frac{\partial {\varvec{\varGamma }}}{\partial \phi }{\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }{\varvec{\varGamma }}^{-1} \right) \right) {\varvec{V}}\\ \ddot{{\varvec{\ell }}}(\beta _0\phi ) = -&\frac{2}{\alpha ^2}{\varvec{W}}^\top \varvec{\varGamma }^{-1} \frac{\partial {\varvec{\varGamma }}}{\partial \phi }\varvec{\varGamma }^{-1}{\varvec{V}}\\ \ddot{{\varvec{\ell }}}({\varvec{b}}_j \phi ) = -&\frac{2}{\alpha ^2} ({\varvec{W}}^\top \odot {\varvec{z}}_j^\top ) \varvec{\varGamma }^{-1} \frac{\partial {\varvec{\varGamma }}}{\partial \phi }\varvec{\varGamma }^{-1}{\varvec{V}}, \; j = 1, \ldots , K_{\beta } \end{aligned}$$

In addition, \(\ddot{{\varvec{\ell }}}({\varvec{b}}_j\alpha ) = \ddot{{\varvec{\ell }}}(\alpha {\varvec{b}}_j)\), \(\ddot{{\varvec{\ell }}}(\phi \alpha ) = \ddot{{\varvec{\ell }}}( \alpha \phi )\), \(\ddot{{\varvec{\ell }}}({\varvec{b}}_j\beta _0) = (\ddot{{\varvec{\ell }}}(\beta _0{\varvec{b}}_j))^\top\), \(\ddot{{\varvec{\ell }}}(\phi \beta _0) = \ddot{{\varvec{\ell }}}( \beta _0\phi )\) and \(\ddot{{\varvec{\ell }}}(\phi {\varvec{b}}_j) = \ddot{{\varvec{\ell }}}({\varvec{b}}_j \phi )\).

Therefore, following Garcia-Papani et al. (2018a), the expected Fisher information matrix given in (16), is formed by the elements

$$\begin{aligned} E(-\ddot{{\varvec{\ell }}}(\alpha ))&= \frac{2n}{\alpha ^2}\\ E(-\ddot{{\varvec{\ell }}}(\alpha \beta _0))&= 0\\ E(-\ddot{{\varvec{\ell }}}(\alpha \varvec{b_j}))&= 0\\ E(-\ddot{{\varvec{\ell }}}(\alpha \phi ))&= \frac{1}{\alpha }\text {tr}\left( {\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }\right) \\ E(-\ddot{{\varvec{\ell }}}(\beta _0))&= \frac{1}{\alpha ^2}{\varvec{\varGamma }}^{-1}\\ E(-\ddot{{\varvec{\ell }}}(\beta _0\varvec{b_j}))&= \frac{1}{\alpha ^2}{\varvec{1}}^\top {\varvec{\varGamma }}^{-1}{\varvec{z}}_j, \; j = 1, \ldots , K_{\beta }\\ E(-\ddot{{\varvec{\ell }}}(\beta _0\phi ))&= 0\\ E(-\ddot{{\varvec{\ell }}}(\varvec{b_j}\beta _0))&= \frac{1}{\alpha ^2}{\varvec{z}}_j^\top {\varvec{\varGamma }}^{-1}{\varvec{1}}, \; j = 1, \ldots , K_{\beta }\\ E(-\ddot{{\varvec{\ell }}}(\varvec{b_j}))&= \frac{1}{\alpha ^2}{\varvec{z}}_l^\top {\varvec{\varGamma }}^{-1}{\varvec{z}}_j, \; l,j = 1, \ldots , K_{\beta }\\ E(-\ddot{{\varvec{\ell }}}(\varvec{b_j}\phi ))&= 0 \\ E(-\ddot{{\varvec{\ell }}}(\phi ))&= \frac{1}{2}\text {tr}\left( {\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }{\varvec{\varGamma }}^{-1}\frac{\partial {\varvec{\varGamma }}}{\partial \phi }\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, S., Giraldo, R. & Leiva, V. Birnbaum–Saunders functional regression models for spatial data. Stoch Environ Res Risk Assess 33, 1765–1780 (2019). https://doi.org/10.1007/s00477-019-01708-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01708-9

Keywords

Navigation