Skip to main content
Log in

Comparison of machine learning models for predicting fluoride contamination in groundwater

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Groundwater is an especially important freshwater source for water supplies in the Maku area of northwest Iran. The groundwater of the area contains high concentrations of fluoride and is, therefore, important in predicting the fluoride contamination of the groundwater for the purpose of planning and management. The present study aims to evaluate the ability of the extreme learning machine (ELM) model to predict the level of fluoride contamination in the groundwater in comparison to multilayer perceptron (MLP) and support vector machine (SVM) models. For this purpose, 143 water samples were collected in a five-year period, 2004–2008. The samples were measured and analyzed for electrical conductivity, pH, major chemical ions and fluoride. To develop the models, the data set—including Na+, K+, Ca2+ and HCO3 concentrations as the inputs and fluoride concentration as the output—was divided into two subsets; training/validation (80% of data) and testing (20% of data), based on a cross-validation technique. The radial basis-based ELM model resulted in an R 2 of 0.921, an NSC of 0.9071, an RMSE of 0.5638 (mg/L) and an MABE of 0.4635 (mg/L) for the testing data. The results showed that the ELM models performed better than MLP and SVM models for prediction of fluoride contamination. It was observed that ELM models learned faster than the other models during model development trials and the SVM models had the highest computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah SS, Malek MA, Abdullah NS, Kisi O, Yap KS (2015) Extreme learning machines: a new approach for prediction of reference evapotranspiration. J Hydrol 527:184–195

    Article  Google Scholar 

  • Adamowski JF, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390(1–2):85–91

    Article  Google Scholar 

  • Aghbashlo M, Shamshirband S, Tabatabaei M, Yee PL, Larimi YN (2016) The use of ELM–WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste. Energy 94:443–456

    Article  CAS  Google Scholar 

  • Alagha JS, Said MAM, Mogheir Y (2014) Modeling of nitrate concentration in groundwater using artificial intelligence approach—a case study of Gaza coastal aquifer. Environ Monit Assess 186(1):35–45

    Article  CAS  Google Scholar 

  • Al-Anazi AF, Gates ID (2010) Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study. Comput Geosci 36:1494–1503

    Article  Google Scholar 

  • Al-Mahallawi K, Mania J, Hani A, Shahrour I (2012) Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas. Environ Earth Sci 65(3):917–928

    Article  CAS  Google Scholar 

  • Al-Shammari ET, Keivani A, Shamshirband S, Mostafaeipour A, Yee PL, Petkovic D, Sudheer CH (2016) Prediction of heat load in district heating systems by support vector machine with Firefly searching algorithm. Energy 95:266–273

    Article  Google Scholar 

  • American Public Health Association (1998) Standard method for the examination of water and wastewater, 17th edn. American Public Health Association, Washington

    Google Scholar 

  • Amirmojahedi A, Mohammadi K, Shamshirband S, Danesh AS, Mostafaeipour A, Kamsin A (2016) A hybrid computational intelligence method for predicting dew point temperature. Environ Earth Sci 75:415. doi:10.1007/s12665-015-5135-7

    Article  Google Scholar 

  • Amini M, Johnson A, Abbaspour KC, Mueller K (2009) Modeling large scale geogenic contamination of groundwater, combination of geochemical expertise and statistical techniques. 18th World IMACS/MODSIM Congress, Cairns, pp 4100–4106

  • Asghari Moghaddam A, Fijani E (2007) Hydrogeologic and hydrochemical studies of Maku Area basaltic and karstic aquifers in relation to geological formations (in Persian). Sci Q J Geosci 17(67):2–13

    Google Scholar 

  • Asghari Moghaddam A, Fijani E (2008) Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ Geol 56:281–287

    Article  CAS  Google Scholar 

  • Asghari Moghaddam A, Fijani E (2009) Hydrogeologic framework of the Maku area basalts, northwestern Iran. Hydrogeol J 17:949–959

    Article  CAS  Google Scholar 

  • Asghari Moghaddam A, Jomeiri R, Mohamadi A (2005) Investigation of hydrogeologic characteristics of Maku area basaltic rocks for optimum groundwater management using geophysical, RS and GIS methods (in Persian). University of Tabriz, Tabriz

    Google Scholar 

  • Asghari Moghaddam A, Jomeiri R, Mohamadi A (2007) Source of high fluoride in groundwater of basaltic lavas of Bazargan–Poldasht Plains and its ill effects on human health (in Persian). J Environ Stud (University of Tehran) 33:25–32

    Google Scholar 

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water: A review on the status and stress effects. Crit Rev Environ Sci Technol 36:433–487

    Article  CAS  Google Scholar 

  • Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188:319–333

    Article  CAS  Google Scholar 

  • Barzegar R, Adamowski J, Asghari Moghaddam A (2016a) Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. Stoch Environ Res Risk Assess. doi:10.1007/s00477-016-1213-y

    Google Scholar 

  • Barzegar R, Asghari Moghaddam A (2016) Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Model Earth Syst Environ. doi:10.1007/s40808-015-0072-8

    Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Baghban H (2016b) A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, Iran. Stoch Environ Res Risk Assess 30(3):883–899

    Article  Google Scholar 

  • Barzegar R, Sattarpour M, Nikudel MR, Asghari Moghaddam A (2016c) Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, case study: Azarshahr area, NW Iran. Model Earth Syst Environ. doi:10.1007/s40808-016-0132-8

    Google Scholar 

  • Belayneh A, Adamowski J (2012) Standard Precipitation Index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl Comput Intell Soft Comput 2012:794061. doi:10.1155/2012/794061

    Google Scholar 

  • Belayneh A, Adamowski J, Khalil B (2016) Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustain Water Resour Manag 2(1):87–101

    Article  Google Scholar 

  • Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet-support vector regression models. J Hydrol 508:418–429

    Article  Google Scholar 

  • Cerklewski FL (1997) Fluoride bioavailability: nutritional and clinical aspects. Nutr Res 17:907–929

    Article  CAS  Google Scholar 

  • Chang FJ, Tsai WB, Chen HK, Yam RSW, Herricks EE (2013) A self-organizing radial basis network forestimating riverine fish diversity. J Hydrol 476(1):280–289

    Article  Google Scholar 

  • Chau K (2006) A review on integration of artificial intelligence into water quality modelling. Mar Pollut Bull 52:726–733

    Article  CAS  Google Scholar 

  • Chitsazan N, Nadiri AA, Tsai FTC (2016) Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging. J Hydrol 528:52–62

    Article  Google Scholar 

  • Cho KH, Sthiannopkao S, Pachepsky YA, Kim KW, Kim JH (2011) Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res 45(17):5535–5544

    Article  CAS  Google Scholar 

  • Chowdhury M, Alouani A, Hossain F (2010) Comparison of ordinary kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater. Stoch Environ Res Risk Assess 24(1):1–7

    Article  Google Scholar 

  • Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol Sci J 48(3):349–361

    Article  Google Scholar 

  • Coppola EA Jr, Rana AJ, Poulton MM, Szidarovszky F, Uhl VW (2005) A neural network model for predicting aquifer water level elevations. Ground Water 43(2):231–241

    Article  CAS  Google Scholar 

  • Dar IA, Sankar K, Dar MA, Majumder M (2012) Fluoride contamination - Artificial neural network modeling and inverse distance weighting approach. J Water Sci 25(2):165–182

    CAS  Google Scholar 

  • Ding S, Zhang J, Xu X, Zhang Y (2016) A wavelet extreme learning machine. Neural Comput Appl 27(4):1033–1040

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and Chemical Hydrogeology. Wiley, New York, p 824

    Google Scholar 

  • Dongwen CUI (2013) Application of extreme learning machine to total phosphorus and total nitrogen forecast in lakes and reservoirs. Water Resour Prot 29(2):61–66. doi:10.3969/j.issn.1004-6933.2013.02.013

    Google Scholar 

  • Ebtehaj I, Bonakdari H, Shamshirband S, Mohammadi K (2016) A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer. Flow Meas Instrum. doi:10.1016/j.flowmeasinst.2015.11.002

    Google Scholar 

  • EPA (1997) Public health global for fluoride in drinking water. Pesticide and environmental toxicology. Section Office of Environmental Health Hazard Assessment, California Environmental Protection Agency

  • Fernández-Delgado M, Cernadas E, Barro S, Ribeiro J, Neves J (2014) Direct kernel perceptron (DKP): ultra-fast kernel ELM-based classification with noniterative closed-form weight calculation. Neural Netw 50:60–71

    Article  Google Scholar 

  • Fernando DAK, Shamseldin AY (2009) Investigation of internal functioning of the radial-basis-function neural network river flow forecasting models. J Hydrol Eng 14(3):286–292

    Article  Google Scholar 

  • Fijani E (2007) Investigation of hydrogeology and hydrochemistry of basaltic-alluvial aquifers in Bazarganand Poldasht Plains, MSc Thesis. University of Tabriz, Iran. (in Persian).

  • Fijani E, Nadiri A, Asghari Moghaddam A, Tsai FT-C, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer. Iran. J Hydrol 503:89–100

    Article  CAS  Google Scholar 

  • Goyal MK, Bharti B, Quilty J, Adamowski J, Pandey A (2014) Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst Appl 41:5267–5276

    Article  Google Scholar 

  • Gupta S, Banerjee S, Saha R, Datta JK, Mondal N (2006) Fluoride geochemistry of groundwater in Birbhum, West Bengal, India. Fluoride 39:318–320

    CAS  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice-Hall, New Jersey, p 842

    Google Scholar 

  • Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48

    Article  Google Scholar 

  • Huang G, Song S, Gupta J, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44:2405–2417

    Article  Google Scholar 

  • Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern 42(2):513–529

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2004) Extreme learning Machine: a new learning scheme of feedforward neural networks. Int Joint Conf Neural Netw 2:985–990

    Google Scholar 

  • Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  • Imen S (2015) Drinking water infrastructure assessment with teleconnection signals, satellite data fusion and mining. University of Central Florida, Orlando, p 149

    Google Scholar 

  • Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques. Water Resour Res 40(4):W04302. doi:10.1029/2003WR002355

    Article  Google Scholar 

  • Javadi A, Al-Najjar M (2007) Finite element modeling of contaminant transport in soils including the effect of chemical reactions. J Hazard Mater 143(3):690–701

    Article  CAS  Google Scholar 

  • Kisi O, Tombul M, Zounemat Kermani M (2015) Modeling soil temperatures at different depths by using three different neural computing techniques. Theor Appl Climatol 121(1):377–387

    Article  Google Scholar 

  • Kraynov SR, Merkov AN, Petrova NG, Baturinskaya IV, Zharikova VM (1969) Highly alkaline (pH 12) fluosilicate waters in the deeper zone of the Lovozero Massif. Geochem Int 6:635–640

    Google Scholar 

  • Kundu MC, Mandal B (2009) Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal, India. Environ Monit Assess 152:97–103

    Article  CAS  Google Scholar 

  • Liu Q, Yin J, Leung VCM, Zhai JH, Cai Z, Lin J (2016) Applying a new localized generalization error model to design neural networks trained with extreme learning machine. Neural Comput Appl 27:59–66

    Article  CAS  Google Scholar 

  • Malekmohammadi I, Bazargan-Lari MR, Kerachian R, Nikoo MR, Fallahnia M (2011) Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Eng 38:487–497

    Article  Google Scholar 

  • Mirabbasi R (2015) Application of artificial intelligence methods for groundwater quality prediction. Application of artificial intelligence methods in geosciences and hydrology. MICS Group International, hyderabad

    Google Scholar 

  • Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198(1–2):127–138

    Article  Google Scholar 

  • Mojumder JC, Ong HC, Chong WT, Shamshirband S, Al-Mamoon A (2016) Application of support vector machine for prediction of electrical and thermal performance in PV/T system. Energy Build 111:267–277

    Article  Google Scholar 

  • Nadiri AA, Fijani E, Tsai FTC, Asghari Moghaddam A (2013) Supervised committee machine with artificial intelligence for prediction of fluoride concentration. J Hydroinform 15(4):1474–1490

    Article  CAS  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Noori R, Karbassi AR, Moghaddamnia A, Han D, Zokaei-Ashtian MH, Farokhnia A, Ghafari Gousheh M (2011) Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J Hydrol 401:177–189

    Article  Google Scholar 

  • Noori R, Karbassi AR, Sabahi MS (2010) Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste predicting. J Environ Manag 91:767–771

    Article  CAS  Google Scholar 

  • Nourani V, Baghanam AH, Adamowski J, Gebremichael M (2013) Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J Hydrol 476:228–243

    Article  Google Scholar 

  • Patel SC, Khalkho R, Patel SK, Sheikh JM, Behera D, Chuadhari S, Prabhakar N (2014) Fluoride contamination of groundwater in parts of eastern India and a preliminary experimental study of fluoride adsorption by natural haematite iron ore and synthetic magnetite. Environ Earth Sci 72:2033–2049

    Article  CAS  Google Scholar 

  • Rafique T, Naseem S, Bhanger MI, Usmani TH (2008) Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environ Geol 56:317–326

    Article  CAS  Google Scholar 

  • Rajasekaran S, Gayathri S, Lee TL (2008) Support vector regression methodology for storm surge predictions. Ocean Eng 35(16):1578–1587

    Article  Google Scholar 

  • Ramanaiah SV, Venkatamohan S, Rajkumar B, Sarm PN (2006) Monitoring of fluoride concentration in groundwater of Prakasham district in India: correlation with physico-chemical parameters. J Environ Sci Eng 48:129–134

    CAS  Google Scholar 

  • Sahoo GB, Ray C, Mehnert E, Keefer DA (2006) Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci Total Environ 367(1):234–251

    Article  CAS  Google Scholar 

  • Shamshirband S, Mohammadi K, Khorasanizadeh H, Yee PL, Lee M, Petkovic D, Zalnezhad E (2016) Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model. Renew Sustain Energy Rev 56:428–435

    Article  Google Scholar 

  • Sirat M (2013) Neural network assessment of groundwater contamination of US Mid-continent. Arabian Journal of Geosciences 6(8):3149–3160

    Article  CAS  Google Scholar 

  • Sonebi M, Cevik A, Grunewald S, Walraven J (2016) Modelling the fresh properties of self-compacting concrete using support vector machine approach. Constr Build Mater 106:55–64

    Article  Google Scholar 

  • Valenzuela-Vasquez L, Ramýrez-Hernandez J, Reyes-Lopez J, Sol-Uribe A, Lazaro-Mancilla O (2006) The origin of fluoride in groundwater supply to Hermosillo City, Sonora, Mexico. Environ Geol 51:17–27

    Article  CAS  Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York, p 314

    Book  Google Scholar 

  • Wanas N, Auda G, Kamel MS, Karray F (1998) On the optimal number of hidden nodes in a neural network. Proc IEEE Can Conf Electr Comput Eng 2:918–921

    Article  Google Scholar 

  • Wang B, Tang L, Yang J, Zhao B, Wang S (2015) Visual tracking based on extreme learning machine and sparse representation. Sensors 15(10):26877–26905

    Article  Google Scholar 

  • World Health Organization (2008) Guidelines for drinking water quality. Recommendations, 2nd edn. WHO, Geneva, p 306

    Google Scholar 

  • Wu KP, Wang SD (2009) Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recogn 42(5):710–717

    Article  Google Scholar 

  • Yang H, Huang K, King I, Lyu MR (2009) Localized support vector regression for time series prediction. Neurocomputing 72(10):2659–2669

    Article  Google Scholar 

  • Zaji AH, Bonakdari H, Khodashenas SR, Shamshirband S (2016) Firefly optimization algorithm effect on support vector regression prediction improvement of a modified labyrinth side weir’s discharge coefficient. Appl Math Comput 274:14–19

    Google Scholar 

  • Zhang Y, Cai Z, Gong W, Wang X (2015) Self-adaptive differential evolution extreme learning machine and its application in water quality evaluation. J Comput Inf Syst 11(4):1443–1451

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Barzegar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar, R., Asghari Moghaddam, A., Adamowski, J. et al. Comparison of machine learning models for predicting fluoride contamination in groundwater. Stoch Environ Res Risk Assess 31, 2705–2718 (2017). https://doi.org/10.1007/s00477-016-1338-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1338-z

Keywords

Navigation