Skip to main content
Log in

Analyzing explanatory factors of urban pluvial floods in Shanghai using geographically weighted regression

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In the context of climate change and rapid urbanization, urban pluvial floods pose an increasing threat to human wellbeing and security in the cities of China. A valuable aid to managing this problem lies in understanding the roles of environmental factors in influencing the occurrence of pluvial floods. This study presents a spatial analysis of records of inundated streets in the inner city of Shanghai during 1997–2013. A geographically weighted regression (GWR) is employed to examine the spatially explicit relationships between inundation frequency and spatial explanatory factors, and an ordinary least squares regression (OLS) is used to validate the GWR results. Results from the GWR model show that the inundation frequency is negatively related to elevation, pipeline density, and river density, and is positively related to road/square ratio and shantytown ratio. The green ratio is another significant explanatory factor for inundation frequency, and its coefficients range from −1.11 to 0.81. In comparison with the OLS model, the GWR model has better performance as it has higher R2, and lower corrected Akaike information criterion and mean square error values, as well as insignificant spatial autocorrelation of the model residuals. Additionally, the GWR model reveals detailed site-specific roles of the related factors in influencing street inundation. These findings demonstrate that the GWR model is a useful tool for investigating spatially explicit causes of disasters. The results also provide guidance for policy makers aiming to mitigate urban pluvial flood risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Battiata J, Collins K, Hirschman D, Hoffmann G (2010) The runoff reduction method. J Contemp Water Res Educ 146(1):11–21. doi:10.1111/j.1936-704X.2010.00388.x

    Article  Google Scholar 

  • Bobrowsky PT (2013) Encyclopedia of natural hazards. Springer, Dordrecht

    Book  Google Scholar 

  • Brunsdon C, Fotheringham S, Charlton M (1998) Geographically weighted regression. J R Stat Soc Ser D 47(3):431–443

    Article  Google Scholar 

  • Cai L (2009) Shantytowns and management ability of national government in modern Shanghai. Hist Rev 02:23–30

    Google Scholar 

  • Cheng XT (2005) Changes of flood control situations and adjustments of flood management strategies in China. Water Int 30(1):108–113

    Article  Google Scholar 

  • Cheng J, Yang K, Zhao J, Yuan W, Wu JP (2007) Variation of river system in center district of Shanghai and its impact factors during the last one hundred years. Scientia Geographica Sinica 27(1):85–91 (in Chinese)

    Google Scholar 

  • Cherqui F, Belmeziti A, Granger D, Sourdril A, Le Gauffre P (2015) Assessing urban potential flooding risk and identifying effective risk-reduction measures. Sci Total Environ 514:418–425. doi:10.1016/j.scitotenv.2015.02.027

    Article  CAS  Google Scholar 

  • Cliff A, Ord J (1981) Spatial processes: models and applications. Pion Ltd, London

    Google Scholar 

  • de Smith MJ, Goodchild MF, Longley PA (2015) Geospatial analysis: a comprehensive guide to principles, techniques and software tools. The Winchelsea Press, Winchelsea

    Google Scholar 

  • Du S, Gu H, Wen J, Chen K, Van Rompaey A (2015a) Detecting flood variations in Shanghai over 1949–2009 with Mann–Kendall tests and a newspaper-based database. Water 7(5):1808–1824

    Article  Google Scholar 

  • Du S, Shi P, Van Rompaey A, Wen J (2015b) Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Nat Hazards. doi:10.1007/s11069-014-1463-2

    Google Scholar 

  • Du S, Van Rompaey A, Shi P, Wang JA (2015c) A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation. Nat Hazards. doi:10.1007/s11069-014-1583-8

    Google Scholar 

  • Gaitan S, ten Veldhuis J (2015) Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks. Proc IAHS 370:9–14

    Article  Google Scholar 

  • Gaitan S, ten Veldhuis MC, van de Giesen N (2015) Spatial distribution of flood incidents along urban overland flow-paths. Water Resour Manag 29(9):3387–3399. doi:10.1007/s11269-015-1006-y

    Article  Google Scholar 

  • Gao J, Li S (2011) Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using geographically weighted regression. Appl Geogr 31(1):292–302. doi:10.1016/j.apgeog.2010.06.003

    Article  Google Scholar 

  • Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Blaskovicova L, Bloschl G, Borga M, Dumitrescu A, Daliakopoulos I, Garcia J, Irimescu A, Kohnova S, Koutroulis A, Marchi L, Matreata S, Medina V, Preciso E, Sempere-Torres D, Stancalie G, Szolgay J, Tsanis I, Velasco D, Viglione A (2009) A compilation of data on European flash floods. J Hydrol 367(1–2):70–78. doi:10.1016/j.jhydrol.2008.12.028

    Article  Google Scholar 

  • GRIP (2015) Disaster databases. http://174.122.150.229/~gripwebo/gripweb/?q=disaster-database. Accessed 5 Jan 2015

  • Guha-Sapir D, Below R, Hoyois P (2015) EM-DAT: The CRED/OFDA International Disaster Database. www.emdat.be, Université Catholique de Louvain, Brussels, Belgium

  • Harris P, Clarke A, Juggins S, Brunsdon C, Charlton M (2014) Geographically weighted methods and their use in network re-designs for environmental monitoring. Stoch Env Res Risk Assess 28(7):1869–1887. doi:10.1007/s00477-014-0851-1

    Article  Google Scholar 

  • Hood MJ, Clausen JC, Warner GS (2007) Comparison of stormwater lag times for low impact and traditional residential development. J Am Water Resour Assoc 43(4):1036–1046. doi:10.1111/j.1752-1688.2007.00085.x

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Landwehr P, Carley K (2014) Social media in disaster relief. In: Chu WW (ed) Data mining and knowledge discovery for big data. Studies in big data, vol 1. Springer, Berlin, pp 225–257. doi:10.1007/978-3-642-40837-3_7

  • Llasat MC, Llasat-Botija M, Lopez L (2009) A press database on natural risks and its application in the study of floods in Northeastern Spain. Nat Hazards Earth Syst 9(6):2049–2061

    Article  Google Scholar 

  • Merz B, Kreibich H, Lall U (2013) Multi-variate flood damage assessment: a tree-based data-mining approach. Nat Hazards Earth Syst 13(1):53–64. doi:10.5194/nhess-13-53-2013

    Article  Google Scholar 

  • Miller HJ (2004) Tobler’s first law and spatial analysis. Ann Assoc Am Geogr 94(2):284–289. doi:10.1111/j.1467-8306.2004.09402005.x

    Article  Google Scholar 

  • Osborne PE, Foody GM, Suárez-Seoane S (2007) Non-stationarity and local approaches to modelling the distributions of wildlife. Divers Distrib 13(3):313–323. doi:10.1111/j.1472-4642.2007.00344.x

    Article  Google Scholar 

  • Quan RS (2014) Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation. Nat Hazards 73(3):1569–1585. doi:10.1007/s11069-014-1156-x

    Article  Google Scholar 

  • Rashid H (2011) Interpreting flood disasters and flood hazard perceptions from newspaper discourse Tale of two floods in the Red River valley, Manitoba, Canada. Appl Geogr 31(1):35–45. doi:10.1016/j.apgeog.2010.03.010

    Article  Google Scholar 

  • Schubert JE, Sanders BF, Smith MJ, Wright NG (2008) Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding. Adv Water Resour 31(12):1603–1621. doi:10.1016/j.advwatres.2008.07.012

    Article  Google Scholar 

  • Shi P, Wang JA, Yang M, Chen J, Pan Y, Wang P, Fang W, Zhou W, Wang Y, Yuan Y, Xu X, Luo W (2000) Understanding of natural disaster database design and compilation of digital atlas of natural disasters in China. Geogr Inf Sci 6(2):153–158. doi:10.1080/10824000009480544

    Google Scholar 

  • Shi Y, Shi C, Xu SY, Sun AL, Wang J (2010) Exposure assessment of rainstorm waterlogging on old-style residences in Shanghai based on scenario simulation. Nat Hazards 53(2):259–272. doi:10.1007/s11069-009-9428-6

    Article  Google Scholar 

  • Spekkers MH, Kok M, Clemens FHLR, ten Veldhuis JAE (2013) A statistical analysis of insurance damage claims related to rainfall extremes. Hydrol Earth Syst Sci 17(3):913–922. doi:10.5194/hess-17-913-2013

    Article  Google Scholar 

  • Spekkers MH, Kok M, Clemens F, ten Veldhuis JAE (2014) Decision-tree analysis of factors influencing rainfall-related building structure and content damage. Nat Hazards Earth Syst 14(9):2531–2547. doi:10.5194/nhess-14-2531-2014

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79. doi:10.1016/j.jhydrol.2013.09.034

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2014) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343. doi:10.1016/j.jhydrol.2014.03.008

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2015) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Env Res Risk Assess 29(4):1149–1165. doi:10.1007/s00477-015-1021-9

    Article  Google Scholar 

  • ten Veldhuis JAE, Clemens FHLR, van Gelder PHAJM (2011) Quantitative fault tree analysis for urban water infrastructure flooding. Struct Infrastruct Eng 7(11):809–821. doi:10.1080/15732470902985876

    Article  Google Scholar 

  • Tu J, Xia ZG (2008) Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Sci Total Environ 407(1):358–378. doi:10.1016/j.scitotenv.2008.09.031

    Article  CAS  Google Scholar 

  • Wang J, Haining R, Cao Z (2010) Sample surveying to estimate the mean of a heterogeneous surface: reducing the error variance through zoning. Int J Geogr Inf Sci 24(4):523–543. doi:10.1080/13658810902873512

    Article  Google Scholar 

  • Wang J, Gao W, Xu S, Yu L (2012) Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim Change 115(3–4):537–558. doi:10.1007/s10584-012-0468-7

    Article  Google Scholar 

  • Warhurst JR, Parks KE, McCulloch L, Hudson MD (2014) Front gardens to car parks: changes in garden permeability and effects on flood regulation. Sci Total Environ 485–486:329–339. doi:10.1016/j.scitotenv.2014.03.035

    Article  Google Scholar 

  • Wong W, Lee J (2005) Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley, Hoboken

    Google Scholar 

  • Wu X, Yu D, Chen Z, Wilby R (2012) An evaluation of the impacts of land surface modification, storm sewer development, and rainfall variation on waterlogging risk in Shanghai. Nat Hazards 63(2):305–323. doi:10.1007/s11069-012-0153-1

    Article  Google Scholar 

  • Xie Y (2013) Development of drainage planning in view of frequent urban waterlogging disasters. Chin J City Plan Rev 37(2):45–50

    Google Scholar 

  • Xu Q (1997) History of hydraulic projects in Shanghai. Shanghai Academy of Social Sciences Press, Shanghai (in Chinese)

    Google Scholar 

  • Yang TH, Yang SC, Ho JY, Lin GF, Hwang GD, Lee CS (2015) Flash flood warnings using the ensemble precipitation forecasting technique: a case study on forecasting floods in Taiwan caused by typhoons. J Hydrol 520:367–378. doi:10.1016/j.jhydrol.2014.11.028

    Article  Google Scholar 

  • Yao L, Chen L, Wei W, Sun R (2015) Potential reduction in urban runoff by green spaces in Beijing: a scenario analysis. Urban For Urban Green 14(2):300–308. doi:10.1016/j.ufug.2015.02.014

    Article  Google Scholar 

  • Yin J, Yin Z, Zhong H, Xu S, Hu X, Wang J, Wu J (2011a) Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environ Monit Assess 177(1–4):609–621. doi:10.1007/s10661-010-1660-8

    Article  Google Scholar 

  • Yin Z, Yin J, Xu S, Wen J (2011b) Community-based scenario modelling and disaster risk assessment of urban rainstorm waterlogging. J Geogr Sci 21(2):274–284. doi:10.1007/s11442-011-0844-7

    Article  Google Scholar 

  • Yin J, Yu D, Yin Z, Wang J, Xu S (2013) Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China. Clim Change 119(3–4):919–932. doi:10.1007/s10584-013-0749-9

    Article  Google Scholar 

  • Yu DY, Shi PJ, Liu YP, Xun B (2013) Detecting land use-water quality relationships from the viewpoint of ecological restoration in an urban area. Ecol Eng 53:205–216. doi:10.1016/j.ecoleng.2012.12.045

    Article  Google Scholar 

  • Yuan Z (1999) Floods and drought in Shanghai. Hohai University Press, Nanjing (in Chinese)

    Google Scholar 

  • Zhang B, G-d Xie, Li N, Wang S (2015) Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China. Landsc Urban Plan 140:8–16. doi:10.1016/j.landurbplan.2015.03.014

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant No. 41401603), the Natural Science Foundation of Shanghai Normal University (Grant No. SK201423 and No. SK201523).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiqiang Du or Jiahong Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Du, S., Wen, J. et al. Analyzing explanatory factors of urban pluvial floods in Shanghai using geographically weighted regression. Stoch Environ Res Risk Assess 31, 1777–1790 (2017). https://doi.org/10.1007/s00477-016-1242-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1242-6

Keywords

Navigation