Skip to main content

Advertisement

Log in

Regional response of dengue fever epidemics to interannual variation and related climate variability

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Dengue is a major international public health concern and one of the most important vector-borne diseases. The purpose of this article is to investigate the association among temperature, rainfall, relative humidity, and dengue fever by incorporating the lag effect and examining the dominant interannual model of the modern climate, the El Niño Southern Oscillation (ENSO), in the southern region of Taiwan. We built a linear Poisson regression model by including linear time treads and statistical indicators, verified with disease data in the 2004–2013 period. Here we showed that regional climatic factors in association with the interannual climate variability expressed by the ENSO phenomenon had a significant influence on the dynamics of urban dengue fever in southern Taiwan. The 2–4-month lag of statistical indicators of regional climate factors together with the 4-month lagged Pacific surface temperature (SST) anomaly in the proposed Poisson regression model could capture the regional dengue incidence patterns well. The statistical indicators of mean and coefficient of variation of temperature showed the greatest impact on the dengue incidence rate. We also found that the dengue incidence rate increased significantly with the lag effect of the warmer SST. The ability to forecast regional dengue incidence in southern Taiwan could permit pretreatment of mosquito habitats adjacent to human habitations with highly effective insecticides that would be released at the time of the high-temperature season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  Google Scholar 

  • Bi P, Zhang Y, Parton KA (2007) Weather variables and Japanese encephalitis in the metropolitan area of Jinan city, China. J Infect 55:551–556

    Article  Google Scholar 

  • Biggs R, Carpenter SR, Brock WA (2009) Turning back from the brink: detecting an impending regime shift in time to avert it. Proc Natl Acad Sci USA 106:826–831

    Article  CAS  Google Scholar 

  • Brunkard JM, Cifuentes E, Rothenberg SJ (2008) Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Salud Publica Mex 50:227–234

    Article  Google Scholar 

  • Burattini MN, Chen M, Chow A et al (2008) Modelling the control strategies against dengue in Singapore. Epidemiology and Infection 136:309–319

  • Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecol Lett 9:308–315

    Google Scholar 

  • Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2:e106

    Article  Google Scholar 

  • Centers for Disease Control, Department of Health, ROC (Taiwan) (2002) Statistics of communicable diseases and surveillance report in Taiwan area, 2002. http://www.cdc.gov.tw/uploads/files/201304/78dcc96b-16d3-401b-93a1-14976f022e40.pdf. Accessed 2 July 2013

  • Chen KT, Chou MY, Ma LS (1987) The primary investigation report of dengue outbreak in southern Taiwan. Taiwan Epidemiol Bull 3:93–95

    Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736

    Article  CAS  Google Scholar 

  • Chen SC, Liao CM, Chio CP, Chou HH, You SH, Cheng YH (2010) Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Sci Total Environ 408:4069–4075

    Article  CAS  Google Scholar 

  • Chowell G, Sanchez F (2006) Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. J Environ Health 68:40–44

    Google Scholar 

  • Christophers SR (1960) Aedes aegypti (L.) The yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press, London

    Google Scholar 

  • Dai A, Wigley TML (2000) Global patterns of ENSO-induced precipitation. Geophys Res Lett 27:1283–1286

    Article  Google Scholar 

  • Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc Natl Acad Sci USA 105:14308–14312

    Article  CAS  Google Scholar 

  • Dakos V, van Nes EH, Donangelo R, Fort H, Scheffer M (2010) Spatial correlation as leading indicator of catastrophic shifts. Theor Ecol 3:163–174

    Article  Google Scholar 

  • Drake JM, Griffen BD (2010) Early warning signals of extinction in deteriorating environments. Nature 467:456–459

    Article  CAS  Google Scholar 

  • Earnest A, Tan SB, Wilder-Smith A (2012) Meteorological factors and El Niño Southern Oscillation are independently associated with dengue infections. Epidemiol Infect 140:1244–1251

    Article  CAS  Google Scholar 

  • Figueeiredo MA, Rodrigues LC, Barreto ML et al (2010) Allergies and diabetes as risk factors for dengue hemorrhagic fever: results of a case control study. PLoS Negl Trop Dis 4:e699

    Article  Google Scholar 

  • Focks DA, Barrera R (2007) Dengue transmission dynamics: assessment and implications for control. Report of the Scientific Working Group meeting on Dengue, World Health Organization, Geneva, pp 92–109

    Google Scholar 

  • Gagnon AS, Bush ABG, Smoyer-Tomic KE (2001) Dengue epidemics and the El Niño Southern Oscillation. Clim Res 19:35–43

    Article  Google Scholar 

  • Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496

    CAS  Google Scholar 

  • Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109:223–233

    Article  Google Scholar 

  • Guttal V, Jayaprakash C (2008) Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol Lett 11:450–460

    Article  Google Scholar 

  • Hales S, Weinstein P, Woodward A (1996) Dengue fever epidemics in the South Pacific: driven by El Niño southern oscillation? Lancet 348:1664–1665

    Article  CAS  Google Scholar 

  • Hales S, Weinstein P, Souares Y, Woodward A (1999) El Niño and the dynamics of vectorborne disease transmission. Environ Health Perspect 107:99–102

    CAS  Google Scholar 

  • Hales S, de Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834

  • Halstead SB (2008) Dengue virus-mosquito interactions. Annu Rev Entomol 53:273–291

    Article  CAS  Google Scholar 

  • Hii YL, Rocklöv J, Wall S, Ng LC, Tang CS, Ng N (2012) Optimal lead time for dengue forecast. PLoS Negl Trop Dis 6:e1848

    Article  Google Scholar 

  • Hu WB, Clements A, Williams G, Tong SL (2010) Dengue fever and El Niño/Southern Oscillation in Queensland, Australia: a time series predictive model. Occup Environ Med 67:307–311

    Article  Google Scholar 

  • Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. Statistician 47(1):183–189

    Google Scholar 

  • Johansson MA, Dominid F, Glass GE (2009) Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis 3:e382

    Article  Google Scholar 

  • King CC, Wu YC, Chao DY et al (2000) Major epidemics of dengue in Taiwan in 1981–2000: related to intensive virus activities in Asia. Dengue Bull 24:1–10

    Google Scholar 

  • Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A (2003) El Niño and health. Lancet 362:1481–1489

    Article  Google Scholar 

  • Kyle JL, Harris E (2008) Global spread and persistence of dengue. Annu Rev Microbiol 62:71–92

    Article  CAS  Google Scholar 

  • Lai LW (2011) Influence of environmental conditions on asynchronous outbreaks of dengue diseases and increasing vector population in Kaohsiung, Taiwan. Int J Environ Health Res 21:133–146

    Article  Google Scholar 

  • Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci USA 108:7460–7465

    Article  CAS  Google Scholar 

  • Lei HY, Huang JH, Huang KJ, Chang C (2002) Status of dengue control programme in Taiwan—2001. Dengue Bull 26:14–23

    Google Scholar 

  • Lenton TM (2011) Early warning of climate tipping points. Nature Clim Change 1(4):201–209

    Article  Google Scholar 

  • Lin CC, Huang YH, Shu PY, Wu HS, Lin YS, Yeh TM, Liu HS, Liu CC, Lei HY (2010) Characteristic of dengue disease in Taiwan: 2002–2007. Am J Trop Med Hyg 82:731–739

    Article  Google Scholar 

  • Livina VN, Lenton TM (2007) A modified method for detecting incipient bifurcations in a dynamical system. Geophys Res Lett 34(3):L03712

    Article  Google Scholar 

  • Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98–S109

    Article  CAS  Google Scholar 

  • Martinerie J, Adam C, Le Van Quyen M, Baulac M, Clemenceau S, Renault B, Varela FJ (1998) Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4:1173–1176

    Article  CAS  Google Scholar 

  • McMichael AJ, Haines A, Slooff R, Kovats S (1996) Climate changes and human health. World Health Organization, Geneva

    Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risk. Lancet 367:859–869

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    Article  CAS  Google Scholar 

  • Phillips ML (2008) Dengue reborn widespread resurgence of a resilient vector. Environ Health Perspect 116:A382–A388

    Article  Google Scholar 

  • Promprou S, Jaroensutasinee M, Jaroensutasinee K (2005) Climatic factors affecting dengue haemorrhagic fever incidence in Southern Thailand. Dengue Bull 29:41–48

    Google Scholar 

  • Reiter P, Lathrop S, Bunning ML et al (2003) Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9:86–89

    Article  Google Scholar 

  • Scheffer MJ, Bascompte J, Brock WA et al (2009) Early-warning signals for critical transitions. Nature 461:53–59

    Article  CAS  Google Scholar 

  • Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD (2000) Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37:89–101

    Article  CAS  Google Scholar 

  • Shepard DS, Suaya JA, Halstead SB, Nathan MB, Gubler DJ, Mahoney RT, Wang DN, Meltzer MI (2004) Cost-effectiveness of a pediatric dengue vaccine. Vaccine 22:1275–1280

    Article  Google Scholar 

  • Su GLS (2008) Correlation of climatic factors and dengue incidence in Metro Manila, Philippines. Ambio 37:292–294

    Article  Google Scholar 

  • Takimoto G (2009) Early warning signals of demographic regime shifts in invading populations. Popul Ecol 51:419–426

    Article  Google Scholar 

  • Thammapalo S, Chongsuvivatwong V, Geater A, Dueravee M (2008) Environmental factors and incidence of dengue fever and dengue haemorrhagic fever in an urban area, Southern Thailand. Epidemiol Infect 136:135–143

    Article  CAS  Google Scholar 

  • Tipayamongkholgul M, Fang CT, Klinchan S, Liu CM, King CC (2009) Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand. BMC Public Health 9:422

    Article  Google Scholar 

  • Tsai JJ, Chan KS, Chang JS et al (2009) Effect of serotypes on clinical manifestations of dengue fever in adults. J Microbiol Immunol Infect 42:471–478

    Google Scholar 

  • Tsai CT, Sung FC, Chen PS, Lin SC (2012) Exploring the spatial and temporal relationships between mosquito population dynamics and dengue outbreaks based on climatic factors. Stoch Environ Res Risk Assess 26:671–680

    Article  Google Scholar 

  • Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36:143–152

    CAS  Google Scholar 

  • Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92:1377–1390

    Article  Google Scholar 

  • Wiwanitkit V (2006) An observation on correlation between rainfall and the prevalence of clinical cases of dengue in Thailand. J Vector Borne Dis 43:73–76

    Google Scholar 

  • Wu PC, Guo HR, Lung SC, Lin CY, Su HJ (2007) Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 103:50–57

    Article  Google Scholar 

  • Yu HL, Yang SJ, Yen HJ, Christakos G (2011) A spatio-temporal climate-based model of early dengue fever warning in the southern Taiwan. Stoch Environ Res Risk Assess 25:485–494

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Min Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, CM., Huang, TL., Lin, YJ. et al. Regional response of dengue fever epidemics to interannual variation and related climate variability. Stoch Environ Res Risk Assess 29, 947–958 (2015). https://doi.org/10.1007/s00477-014-0948-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0948-6

Keywords

Navigation