Skip to main content
Log in

Within-tree variability and sample storage effects of bordered pit membranes in xylem of Acer pseudoplatanus

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Intervessel pit membranes in xylem tissue of Acer pseudoplatanus differ in their thickness both within and across plant organs and may undergo considerable shrinkage during dehydration and sample preparation.

Abstract

Intervessel pit membranes have been suggested to account for more than half of the total xylem hydraulic resistance in plants and play a major role in vulnerability to drought-induced hydraulic failure. While the thickness of intervessel pit membranes was found to be associated with xylem embolism resistance at an interspecific level, variation in pit membrane structure across different organs along the flow path within a single tree remains largely unknown. Based on transmission electron microscopy, we examined intra-tree variation of bordered pit and pit membrane characteristics in xylem of roots, stems, branches, petioles, and leaf veins of Acer pseudoplatanus. Moreover, potential preparation artefacts on pit membrane structure such as alcohol treatment and dehydration were tested. Our observations showed quantitative differences in bordered pits across organs, including variation in pit membrane thickness within and across organs. Vessel size was weakly related to intervessel wall thickness, but not significantly linked to pit membrane thickness. Gradual dehydration of wood samples resulted in irreversible shrinkage of pit membranes, together with increased levels of aspiration. These findings are relevant to explore similarity in xylem embolism resistance across plant organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alder NN, Sperry JS, Pockman WT (1996) Root and stem xylem embolism, stomatal conductance, and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105:293–301

    CAS  PubMed  Google Scholar 

  • Anfodillo T, Petit G, Crivellaro A (2013) Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J 34:352–364. https://doi.org/10.1163/22941932-00000030

    Article  Google Scholar 

  • Bonner LD, Thomas RJ (1972) The ultrastructure of intercellular passageways in vessels of yellow poplar (Liriodendron tulipifera, L.) part I: vessel pitting. Wood Sci Technol 6:196–203

    Google Scholar 

  • Brodribb TJ, Skelton RP, McAdam SAM et al (2016) Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol 209:1403–1409

    PubMed  Google Scholar 

  • Burgess SSO, Pittermann J, Dawson TE (2006) Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant Cell Environ 29:229–239

    PubMed  Google Scholar 

  • Butterfield BG (1998) Microfibril angle in wood. In: The Proceedings of the IAWA/IUFRO international workshop on the significance of microfibril angle to wood quality. International Association of Wood Anatomists, Westport

  • Choat B, Ball M, Luly J, Holtum J (2003) Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiol 131:41–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choat B, Jansen S, Zwieniecki MA et al (2004) Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J Exp Bot 55:1569–1575

    CAS  PubMed  Google Scholar 

  • Choat B, Lahr EC, Melcher PJ et al (2005) The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell Environ 28:1082–1089

    Google Scholar 

  • Choat B, Brodie TW, Cobb AR et al (2006) Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. Am J Bot 93:993–1000

    PubMed  Google Scholar 

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–626

    PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752

    CAS  PubMed  Google Scholar 

  • Czaninski Y (1979) Cytochimie ultrastructurale des parois du xyleme secondaire. Biol Cell 35:97–102

    Google Scholar 

  • Domec JC, Gartner BL (2002) Age-and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiol 22:91–104

    CAS  PubMed  Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer FC (2006) Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. Am J Bot 93:1588–1600

    PubMed  Google Scholar 

  • Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965–3978

    CAS  Google Scholar 

  • Giraudoux P (2017) “pgirmess”: data analysis in ecology. R package version 1.6.7. https://CRAN.R-project.org/package=pgirmess

  • Hacke UG, Sperry JS, Pittermann J (2000) Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31–41

    Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT et al (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. https://doi.org/10.1007/s004420100628

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Google Scholar 

  • Herbette S, Bouchet B, Brunel N et al (2014) Immunolabelling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula × alba. Ann Bot 115:187–199

    PubMed  PubMed Central  Google Scholar 

  • Hochberg U, Albuquerque C, Rachmilevitch S et al (2016) Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. Plant Cell Environ 39:1886–1894

    CAS  PubMed  Google Scholar 

  • Jansen S, Schenk HJ (2015) On the ascent of sap in the presence of bubbles. Am J Bot 102:1561–1563

    CAS  PubMed  Google Scholar 

  • Jansen S, Pletsers A, Sano Y (2008) The effect of preparation techniques on SEM-imaging of pit membranes. IAWA J 29:161–178

    Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419

    PubMed  Google Scholar 

  • Jansen S, Klepsch M, Li S et al (2018) Challenges in understanding air-seeding in angiosperm xylem. Acta Hortic 1222:13–20

    Google Scholar 

  • Johnson DM, Wortemann R, McCulloh KA et al (2016) A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiol 36:983–993

    PubMed  Google Scholar 

  • Kadunc A (2007) Factors influencing the formation of heartwood discolouration in sycamore (Acer pseudoplatanus L.). Eur J For Res 126:349–358

    Google Scholar 

  • Kavanagh KL, Bond BJ, Aitken SN et al (1999) Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol 19:31–37

    PubMed  Google Scholar 

  • Klepsch MM, Schmitt M, Paul Knox J, Jansen S (2016) The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity. AoB Plants. https://doi.org/10.1093/aobpla/plw052

    Article  PubMed  PubMed Central  Google Scholar 

  • Klepsch M, Zhang Y, Kotowska MM et al (2018) Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy. J Exp Bot 69:5611–5623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotowska MM, Hertel D, Abou Rajab Y et al (2015) Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth. Front Plant Sci 6:191

    PubMed  PubMed Central  Google Scholar 

  • Lens F, Sperry JS, Christman MA et al (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723. https://doi.org/10.1111/j.1469-8137.2010.03518.x

    Article  PubMed  Google Scholar 

  • Li S, Lens F, Espino S et al (2016) Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J 37:152–171

    Google Scholar 

  • Liu M, Pan R, Tyree MT (2018) Intra-specific relationship between vessel length and vessel diameter of four species with long-to-short species-average vessel lengths: further validation of the computation algorithm. Trees 32:51–60

    Google Scholar 

  • Losso A, Bär A, Dämon B et al (2019) Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings. New Phytol 221:1831–1842

    PubMed  Google Scholar 

  • Martinez-Sanz M, Pettolino F, Flanagan B et al (2017) Structure of cellulose microfibrils in mature cotton fibres. Carbohydr Polym 175:450–463

    CAS  PubMed  Google Scholar 

  • Martinez-Vilalta J, Prat E, Oliveras I, Pinol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29. https://doi.org/10.1007/s00442-002-1009-2

    Article  PubMed  Google Scholar 

  • McElrone AJ, Pockman WT, Martinez-Vilalta J, Jackson RB (2004) Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytol 163:507–517. https://doi.org/10.1111/j.1469-8137.2004.01127.x

    Article  Google Scholar 

  • Meyra AG, Kuz VA, Zarragoicoechea GJ (2007) Geometrical and physicochemical considerations of the pit membrane in relation to air seeding: the pit membrane as a capillary valve. Tree Physiol 27:1401–1405

    PubMed  Google Scholar 

  • Nardini A, Dimasi F, Klepsch M, Jansen S (2012) Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiol 32:1434–1441

    CAS  PubMed  Google Scholar 

  • Olson ME, Anfodillo T, Rosell JA et al (2014) Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol Lett 17:988–997

    PubMed  Google Scholar 

  • Pereira L, Domingues-Junior AP, Jansen S et al (2018) Is embolism resistance in plant xylem associated with quantity and characteristics of lignin? Trees 32:349–358

    CAS  Google Scholar 

  • Pesacreta TC, Groom LH, Rials TG (2005) Atomic force microscopy of the intervessel pit membrane in the stem of Sapium sebiferum (Euphorbiaceae). IAWA J 26:397–426

    Google Scholar 

  • Pfautsch S, Aspinwall MJ, Drake JE et al (2018) Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. Ann Bot 121:129–141

    PubMed  PubMed Central  Google Scholar 

  • Schacht H (1859) Über die Tüpfel der Gefäss-und Holzzellen. Bot Zeitung 17:238–239

    Google Scholar 

  • Schenk HJ, Espino S, Romo DM et al (2017) Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiol 173:1177–1196

    CAS  PubMed  Google Scholar 

  • Schenk HJ, Espino S, Rich-Cavazos SM, Jansen S (2018) From the sap’s perspective: the nature of vessel surfaces in angiosperm xylem. Am J Bot 105:172–185

    CAS  PubMed  Google Scholar 

  • Schmid R, Machado RD (1968) Pit membranes in hardwoods—fine structure and development. Protoplasma 66:185–204

    Google Scholar 

  • Scholz A, Rabaey D, Stein A et al (2013) The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiol 33:684–694. https://doi.org/10.1093/treephys/tpt050

    Article  PubMed  Google Scholar 

  • Schuldt B, Knutzen F, Delzon S et al (2016) How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytol 210:443–458

    PubMed  Google Scholar 

  • Schulte PJ, Gibson AC (1988) Hydraulic conductance and tracheid anatomy in six species of extant seed plants. Can J Bot 66:1073–1079

    Google Scholar 

  • Shane MW, McCully ME, Canny MJ (2000) Architecture of branch–root junctions in maize: structure of the connecting xylem and the porosity of pit membranes. Ann Bot 85:613–624

    Google Scholar 

  • Skelton RP, Brodribb TJ, Choat B (2017) Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol 214:561–569

    CAS  PubMed  Google Scholar 

  • Sperry JS, Hacke UG (2004) Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. Am J Bot 91:369–385

    PubMed  Google Scholar 

  • Sperry JS, Saliendra NZ (1994) Intra-plant and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ 17:1233–1241. https://doi.org/10.1111/j.1365-3040.1994.tb02021.x

    Article  Google Scholar 

  • Sperry JS, Tyree MT (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol 88:581–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    PubMed  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JE, Eastlack SE (1994) Xylem embolism in ring‐porous, diffuse‐porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75(6):1736–1752

    Google Scholar 

  • Tixier A, Herbette S, Jansen S et al (2014) Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Ann Bot 114:325–334

    PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol 40:19–36

    Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812. https://doi.org/10.1111/j.1365-3040.2005.01330.x

    Article  Google Scholar 

  • Zhang Y, Klepsch M, Jansen S (2017) Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. Plant Cell Environ 40:2133–2146

    CAS  PubMed  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, New York

    Google Scholar 

Download references

Acknowledgements

We thank the Botanical Garden of Ulm University for support and providing plant material. We would like to acknowledge the Electron Microscopy Section of Ulm University for technical support with electron microscopy. The project was financially supported by the German Research Foundation (DFG; JA 2174/5-1, nr. 383393940). Contributions to this research by H. J. Schenk were made possible by funding from the National Science Foundation (IOS-1558108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyna M. Kotowska.

Additional information

Communicated by Francisco M. Cánovas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotowska, M.M., Thom, R., Zhang, Y. et al. Within-tree variability and sample storage effects of bordered pit membranes in xylem of Acer pseudoplatanus. Trees 34, 61–71 (2020). https://doi.org/10.1007/s00468-019-01897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-019-01897-4

Keywords

Navigation