Skip to main content

Advertisement

Log in

Deep rooting of rainfed and irrigated orange trees in Brazil

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Fine roots of orange trees reached a depth of approx. 6 m in a sandy tropical soil. Root area index was more responsive to irrigation than leaf area index.

Abstract

Although the crucial role of deep rooting on the hydraulic functioning of tropical trees has been pointed out, studies dealing with root development below 2 m are still scarce. Our study aimed to gain insight into the fine root traits of rainfed and irrigated orange trees down to the root front in deep tropical soils. Irrigation was applied during dry periods, only 3–15% more than the annual amounts of water supplied by rain. Fine roots were sampled down to a depth of 8 m on four dates in a randomized block design. The effects of soil depth and irrigation on major fine root traits, total fine root length and the relationship between leaf area index (LAI) and root area index (RAI) were studied. The total fine root mass was 728 g m−2 in rainfed plots and 536 g m−2 in irrigated plots during the driest period (Sept/Oct 2012). Across the four sampling dates, the mean depth of the root front was 6.1 m in rainfed plots and 5.5 m in irrigated plots close to the trees, and approximately 4.5 m in the inter-row covered by Brachiaria decumbens plants. LAI was little influenced by irrigation (about 4.5 m2 m−2), but mean RAI was 19.1 m2 m−2 in rainfed plots and 13.7 m2 m−2 in irrigated plots. Small irrigation rates reduced root development in very deep soil layers, and increased fruit production by 9% during the dry year. Deep rooting provides access to water stored in deep soil layers during the rainy season, and thus might have an important functional role during dry periods in tropical orange orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abouatallah A, Salghi R, El Fadl A, Affi N, Ghnizar Y, Zarrouk A, Hammouti B (2012) Impact assessment of drippers distribution around the tree on soil moisture, roots and fruits growth of Citrus. Der Pharma Chemica 4:1969–1981

    CAS  Google Scholar 

  • Agrianual (2013) Anuário da Agricultura Brasileira. FNP, São Paulo

    Google Scholar 

  • Anderson TM, Starmer WT, Thorne M (2007) Bimodal diameter distributions in Serengeti grasses exhibit plasticity in response to defoliation and soil texture: implications for nutrient uptake. Funct Ecol 21:50–60

    CAS  Google Scholar 

  • Battie-Laclau P, Laclau J-P (2009) Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Res 114:351–360

    Article  Google Scholar 

  • Battie-Laclau P, Laclau J-P, Domec J-C, Christina M, Bouillet J-P, Piccolo MC, Gonçalves JLM, Moreira RM, Krusche AV, Bouvet J-M, Nouvellon Y (2014) Effects of potassium and sodium supply on drought-adaptive mechanisms in Eucalyptus grandis plantations. New Phytol 203:401–413

    Article  CAS  PubMed  Google Scholar 

  • Bleby TM, McElrone AJ, Jackson RB (2010) Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant Cell Environ 33:2132–2148

    Article  PubMed  Google Scholar 

  • Böhm W (1979) Methods of studying root systems. Springer, Berlin

    Book  Google Scholar 

  • Bremer Neto H, Mourão Filho AA, Stuchi ES, Espinosa-Núñez E, Cantuarias-Avilés T (2013) The horticultural performance of five ‘Tahiti’ lime selections grafted onto ‘Swingle’ citrumelo under irrigated and non-irrigated conditions. Sci Hortic 150:181–186

    Article  Google Scholar 

  • Cabral OMR, Rocha HR, Gash JH, Ligo MAV, Tatsch JD, Freitas HC, Brasilio E (2012) Water use in a sugarcane plantation. GCB Bioenergy 4:555–565

    Article  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Shulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Castro Neto MT (2013) Fisiologia. In: Cunha Sobrinho AP, Magalhães AFJ, Souza AS, Passos O, Soares Filho WS et al (eds) Cultura dos citros. EMBRAPA, Brazil, pp 173–193

    Google Scholar 

  • Christina M, Laclau J-P, Gonçalves JLM, Jourdan C, Nouvellon Y, Bouillet J-P (2011) Almost symmetrical vertical growth rates above and below ground in one of the world’s most productive forests. Ecosphere 2:1–10

    Article  Google Scholar 

  • Christina M, Nouvellon Y, Laclau J-P, Stape JL, Bouillet J-P, Lambais GR, le Maire G (2016) Importance of deep water uptake in tropical eucalypt forest. Funct Ecol. doi:10.1111/1365-2435.12727 (online)

    Google Scholar 

  • Coelho RB (2010) Irrigação por gotejo: problemas e soluções. Citric Atual 76:12–14

    Google Scholar 

  • CONAB (2011) Laranja: safra 2011. http://www.agricultura.gov.br/arqeditor/file/camarassetoriais/Citricultura/27RO/AppSafra.pdf. Accessed 22 Apr 2015

  • Consoli S, Stagno F, Rocuzzo G, Cirelli GL, Intrigliolo F (2014) Sustainable management of limited water resources in a young orange orchard. Agric Water Manag 132:60–68

    Article  Google Scholar 

  • Costa e Silva F, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiol 24:1165–1172

    Article  PubMed  Google Scholar 

  • Dhyani SK, Tripathi RS (2000) Biomass and production of fine and coarse roots of trees under agrisilvicultural practices in North-east India. Agrofor Syst 50:107–121

    Article  Google Scholar 

  • Duenhas LH, Villas Bôas RL, Souza CMP, Oliveira MVAM, Dalri AB (2005) Produção, qualidade dos frutos e estado nutricional da laranjaValência sob fertirrigação e adubação convencional. Eng Agrícola 25:154–160

    Article  Google Scholar 

  • EMBRAPA (2011) Considerações sobre a produção de laranja no Estado de São Paulo. http://pt.slideshare.net/marqueslms/35-ro-citricultura-embrapa-parte-3. Accessed 22 Apr 2015

  • FLORAGRO (2011) Fine root sampling using a mechanized soil auger. https://www.youtube.com/watch?v=tVdsiFKhnJ4. Accessed 11 Jul 2016

  • Ford HW (1954) The influence of rootstock and tree age on root distribution of Citrus. Proc Am Soc Hortic Sci 63:137–142

    Google Scholar 

  • Freschet GT, Swart EM, Cornelissen JHC (2015) Integrated plant phenotypic responses to contrasting above-and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytol 206:1247–1260

    Article  CAS  PubMed  Google Scholar 

  • Freycon V, Wonkam C, Fayolle A, Laclau J-P, Lucot E, Jourdan C, Cornu G, Gourlet-Fleury S (2015) Tree roots can penetrate deeply in African semi-deciduous rain forests: evidence from two common soil types. J Trop Ecol 31:13–23

    Article  Google Scholar 

  • Guo D, Mengxue X, Xing W, Wenjing C, Ying L, Zhengquan W (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Harper RJ, Smettem KRJ, Carter JO, McGrath JF (2009) Drought deaths in Eucalyptus globulus (Labill.) plantations in relation to soils, geomorphology and climate. Plant Soil 324:199–207

    Article  CAS  Google Scholar 

  • Hawkins E, Sutton R (2012) Time of emergence of climate signals. Geophys Res Lett 39:L01702

    Article  Google Scholar 

  • Herzog C, Steffen J, Pannatier EG, Hajdas I, Brunner I (2014) Nine years of irrigation cause vegetation and fine root shifts in a water-limited pine forest. PLoS One 9:1–11

    Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 27

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Ecology 94:7362–7366

    CAS  Google Scholar 

  • Kleidon A, Heimann M (2000) Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Clim Dyn 16:183–199

    Article  Google Scholar 

  • Laclau J-P, Silva EA, Lambais GR, Bernoux M, Maire G, Stape JL, Bouillet J-P, Gonçalves JLM, Jourdan C, Nouvellon Y (2013) Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Front Plant Sci 4:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma LH, Lui XL, Wang YK, Wu PT (2013) Effects of drip irrigation on the deep root distribution, rooting depth, and soil water profile of jujube in a semiarid region. Plant Soil 373:995–1006

    Article  CAS  Google Scholar 

  • Maeght JL, Rewald B, Pierret A (2013) How to study deep roots—and why it matters. Front Plant Sci 4:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Magnani F, Grace J, Borghetti M (2002) Adjustment of tree structure in response to the environment under hydraulic constraints. Funct Ecol 16:385–393

    Article  Google Scholar 

  • Martínez-Alcântara B, Quiñones A, Forner-Giner MA, Iglesias DJ, Primo-Millo E, Legaz F (2012) Impact of fertilizer-water management on nitrogen use efficiency and potential nitrate leaching in citrus trees. Soil Sci Plant Nutr 58:659–669

    Article  Google Scholar 

  • O’Grady AP, Worledge D, Battaglia M (2006) Above- and below-ground relationships, with particular reference to fine roots, in a young Eucalyptus globulus (Labill.) stand in southern Tasmania. Trees 20:531–538

    Article  Google Scholar 

  • Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in soil water dynamics in savannas of central Brazil. Funct Ecol 19:574–581

    Article  Google Scholar 

  • Pagès L (2011) Links between root developmental traits and foraging performance. Plant Cell Environ 34:1749–1760

    Article  PubMed  Google Scholar 

  • Parsons LR, Morgan KT, Wheaton TA (2000) Using soil water measurements to Schedule irrigation. Citrus Industry 81:21–22

    Google Scholar 

  • Pinheiro RC, Deus JC Jr, Nouvellon Y, Campoe OC, Stape JL, Aló LL, Guerrini IA, Jourdan C, Laclau J-P (2016) A similar pattern of very deep rooting for Eucalyptus seedlings and clones in Brazilian planted forests. For Ecol Manag 366:143–152

    Article  Google Scholar 

  • Pires RCM, Luchiari DJF, Arruda FB, Mossak I (2005) Irrigação. In: Mattos Junior D, De Negri JD, Pio RM, Pompeu Junior J et al (eds) Citros. 369, Brazil, pp 369–408

    Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  CAS  PubMed  Google Scholar 

  • Pregitzer KS, Laskowiski MJ, Burton AJ, Lessard VC, Zac DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    Article  PubMed  Google Scholar 

  • Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A (2015) Root community traits along a land use gradient: evidence of a community-level economics spectrum. J Ecol 103:361–373

    Article  Google Scholar 

  • Quiñones A, Martínez-Alcántara B, Font A, Forner-Giner MA, Legaz F, Primo-Millo E, Iglesias DJ (2013) Allometric models for estimating carbon fixation in Citrus trees. Agron J 105:1355–1366

    Article  Google Scholar 

  • Rocha HR, Manzi AO, Cabral OM, Miller SD, Goulden ML, Saleska SR, Coupe NR, Wofsy SC, Borma LS, Artaxo P, Vourlitis G, Nogueira JS, Cardoso FL, Nobre AD, Kruijt B, Freitas HC, Randow C, Aguiar RG, Maia JF (2009) Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J Geophys Res 114:1–8

    Article  Google Scholar 

  • Roumet C, Urcelay C, Díaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368

    Article  PubMed  Google Scholar 

  • Saleska SR, Didan K, Huete AR, Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318:612

    Article  CAS  PubMed  Google Scholar 

  • Salomão LC, Souza TR, Villas Bôas RL, Andrade TF, Foratto LC, Santos AJM (2012) Posicionamento de extratores de cápsula porosa em solo arenoso na citricultura fertirrigada por gotejamento. Irriga 17:469–480

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza LS, Souza LD, Paiva AQ, Rodrigues ACV, Ribeiro LS (2008) Distribuição do sistema radicular de citros em uma toposseqüência de solos de tabuleiro costeiro do estado da Bahia. Revista Brasileira de Ciência do Solo 32:503–513

    Article  Google Scholar 

  • Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. For Ecol Manag. 46:59–102

    Article  Google Scholar 

  • Sudmeyer RA, Speijers J, Nicholas BD (2004) Root distribution of Pinus pinaster, P. radiata, Eucalyptus globulus and E. kochii and associated soil chemistry in agricultural land adjacent to tree lines. Tree Physiol 24:1333–1346

    Article  CAS  PubMed  Google Scholar 

  • van Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico Campinas, Brazil, p 285

    Google Scholar 

  • Whitney JD, Elizaby A, Castle WS, Wheaton TA, Littell RC (1991) Citrus tree spacing effects on soil water use, root density, and fruit yields. Am Soc Agric Eng 34:129–134

    Article  Google Scholar 

  • Zhuo-Ting G, Zheng-Chao Z, Wen-Zhao L (2010) Vertical distribution and seasonal dynamics of fine root parameters for apple trees of different ages on the Loess Plateau of China. Agric Sci China 9:46–55

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the staff of the Itatinga Experimental Station (ESALQ-USP), in particular Rildo Moreira e Moreira, the staff of the Real Farm, as well as Floragro Apoio à Pesquisa (http://www.floragroapoio.com.br) for their technical support. The study was funded by FAPESP—Fundação de Amparo à Pesquisa do Estado de São Paulo (http://www.fapesp.br, 2012/03342-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Laclau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Noguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adriano, E., Laclau, JP. & Rodrigues, J.D. Deep rooting of rainfed and irrigated orange trees in Brazil. Trees 31, 285–297 (2017). https://doi.org/10.1007/s00468-016-1483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1483-5

Keywords

Navigation