Skip to main content
Log in

Lingering response of radial growth of Picea crassifolia to climate at different altitudes in the Qilian Mountains, Northwest China

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The influence of climate in the previous year on radial growth was stronger than that in the current year and climatic influence became weaker as the altitude increased.

Abstract

The climate conditions during the previous year often influence the radial growth of trees in the current year, which is known as the lingering effect of climate. To explore this lingering effect in depth, we compare the influence of climate in the previous and current year on radial growth and find variations in climatic effects on growth along the altitudinal gradient. We also relate radial growth of Picea crassifolia to climate variables from 24 different timescales (from 1 month to the previous 24 months) at different altitudes in the middle of the Qilian Mountains. In the study area, accumulated monthly precipitation before November in the previous year benefited radial growth in the current year at all altitudes. At lower altitudes, July could be seen as a demarcation point that precipitation from the current May–July significantly affected radial growth in the current year, but precipitation from the current July–October significantly affected radial growth in next year. At the same time, radial growth there responded stronger to precipitation from the previous July–October than that from the current May–July. Radial growth at higher altitudes responded weaker to climatic factors than that at lower altitudes and rarely correlated with precipitation from the current year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Affolter P, Buntgen U, Esper J, Rigling A, Weber P, Luterbacher J, Frank D (2010) Inner Alpine conifer response to 20th century drought swings. Eur J Forest Res 129:289–298. doi:10.1007/s10342-009-0327-x

    Article  Google Scholar 

  • Bond-Lamberty B, Rocha AV, Calvin K, Holmes B, Wang CK, Goulden ML (2014) Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest. Glob Change Biol 20:216–227. doi:10.1111/gcb.12404

    Article  Google Scholar 

  • Cailleret M, Davi H (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees Struct Funct 25:265–276. doi:10.1007/s00468-010-0503-0

    Article  Google Scholar 

  • Chen L, Wu SH, Pan T (2011) Variability of climate-growth relationships along an elevation gradient in the Changbai Mountain, northeastern China. Trees Struct Funct 25:1133–1139. doi:10.1007/s00468-011-0588-0

    Article  Google Scholar 

  • Chen F, Yuan YJ, Wei WS, Yu SL, Fan ZA, Zhang RB, Zhang TW, Li Q, Shang HM (2012) Temperature reconstruction from tree-ring maximum latewood density of Qinghai spruce in middle Hexi Corridor, China. Theor Appl Climatol 107:633–643. doi:10.1007/s00704-011-0512-y

    Article  Google Scholar 

  • Chen F, Yuan YJ, Wei WS, Zhang RB, Yu SL, Shang HM, Zhang TW, Qin L, Wang HQ, Chen FH (2013) Tree-ring-based annual precipitation reconstruction for the Hexi Corridor, NW China: consequences for climate history on and beyond the mid-latitude Asian continent. Boreas 42:1008–1021. doi:10.1111/bor.12017

    Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree ring standardization. University of Arizona, Arizona

    Google Scholar 

  • Deng Y, Gou XH, Gao LL, Zhao ZQ, Cao ZY, Yang MX (2013) Aridity changes in the eastern Qilian Mountains since AD 1856 reconstructed from tree-rings. Quatern Int 283:78–84. doi:10.1016/j.quaint.2012.04.039

    Article  Google Scholar 

  • Esper J, Frank DC, Wilson RJS, Buntgen U, Treydte K (2007) Uniform growth trends among central Asian low- and high-elevation juniper tree sites. Trees Struct Funct 21:141–150. doi:10.1007/s00468-006-0104-0

    Article  Google Scholar 

  • Ettl GJ, Peterson DL (1995) Growth response of subalpine fir (Abies lasiocarpa) to climate in the Olympic Mountains, Washington, USA. Glob Change Biol 1:213–230. doi:10.1111/j.1365-2486.1995.tb00023.x

    Article  Google Scholar 

  • Fritts H (2012) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gou XH, Chen FH, Yang MX, Li JB, Peng JF, Jin LY (2005) Climatic response of thick leaf spruce (Picea crassifolia) tree-ring width at different elevations over Qilian Mountains, northwestern China. J Arid Environ 61:513–524. doi:10.1016/j.jaridenv.2004.09.011

    Article  Google Scholar 

  • Gruber A, Pirkebner D, Oberhuber W (2013) Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers. Tree Physiol 33:1076–1083. doi:10.1093/treephys/tpt088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ 27:367–380. doi:10.1111/j.0016-8025.2003.01159.x

    Article  CAS  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Huang JG, Deslauriers A, Rossi S (2014) Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytol 203:831–841. doi:10.1111/nph.12859

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Zhang WT, Wang MC, Kang MY, Dong MY (2014) Radial growth of two dominant montane conifer tree species in response to climate change in North-Central China. PLoS One 9:e112537. doi:10.1371/journal.pone.0112537

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozlowski TT (1992) Carbohydrate sources and sinks in woody-plants. Bot Rev 58:107–222. doi:10.1007/BF02858600

    Article  Google Scholar 

  • Kuptz D, Fleischmann F, Matyssek R, Grams TE (2011) Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol 191:160–172. doi:10.1111/j.1469-8137.2011.03676.x

    Article  PubMed  Google Scholar 

  • Li DL, Liu DX (2000) Climate in Gansu. China Meteorological Press, Beijing (in Chinese)

    Google Scholar 

  • Liang EY, Shao XM, Eckstein D, Huang L, Liu XH (2006) Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecol Manag 236:268–277. doi:10.1016/j.foreco.2006.09.016

    Article  Google Scholar 

  • Liang EY, Shao XM, Liu XH (2009) Annual precipitation variation inferred from tree rings since AD 1770 for the Western Qilian Mts, northern Tibetan Plateau. Tree Ring Res 65:95–103. doi:10.3959/2008-2.1

    Article  Google Scholar 

  • Liang E, Shao XM, Eckstein D, Liu XH (2010) Spatial variability of tree growth along a latitudinal transect in the Qilian Mountains, northeastern Tibetan Plateau. Can J For Res 40:200–211. doi:10.1139/X09-186

    Article  Google Scholar 

  • Liang E, Leuschner C, Dulamsuren C, Wagner B, Hauck M (2016) Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim Change 134:163–176. doi:10.1007/s10584-015-1531-y

    Article  Google Scholar 

  • Liu XC (1992) Picea crassifolia. Lanzhou University Press, Lanzhou (in Chinese)

    Google Scholar 

  • Liu Y, Sun B, Song HM, Lei Y, Wang CY (2013) Tree-ring-based precipitation reconstruction for Mt. Xinglong, China, since AD 1679. Quatern Int 283:46–54. doi:10.1016/j.quaint.2012.03.045

    Article  Google Scholar 

  • Lu JX, Xu JM, Wu YQ, Li XJ, Evans R, Downes GM (2015) Climatic signals in wood property variables of Picea crassifolia. Wood Fiber Sci 47:131–140

    CAS  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730. doi:10.1111/j.1365-3040.2010.02176.x

    Article  PubMed  Google Scholar 

  • Peng JF, Gou XH, Chen FH, Liu PX, Zhang Y, Fang KY (2007) Characteristics of ring-width chronologies of Picea crassifolia and their responses to climate at different elevations in the Anyemaqen Mountains. Acta Ecol Sin 27:3268–3276

    Google Scholar 

  • Rahman MR, Lateh H (2015) Spatio-temporal analysis of warming in Bangladesh using recent observed temperature data and GIS. Clim Dynam 46:2943–2960

    Article  Google Scholar 

  • Ren P, Rossi S, Gricar J, Liang EY, Cufar K (2015) Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Ann Bot 115:629–639. doi:10.1093/aob/mcu259

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinn F (2003) TSAPWin: time series analysis and presentation for dendrochronology and related applications. Heidelberg

  • Rossi S, Rathgeber CBK, Deslauriers A (2009) Comparing needle and shoot phenology with xylem development on three conifer species in Italy. Ann For Sci 66:206–213. doi:10.1051/forest/2008088

    Article  Google Scholar 

  • Savva Y, Oleksyn J, Reich PB, Tjoelker MG, Vaganov EA, Modrzynski J (2006) Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees Struct Funct 20:735–746. doi:10.1007/s00468-006-0088-9

    Article  Google Scholar 

  • Shao X, Wang S, Zhu H, Xu Y, Liang E, Yin Z, Xu X, Xiao Y (2009) A 3585-year ring-width dating chronology of Qilian juniper from the northeastern Qinghai–Tibetan Plateau. Iawa J 30:379–394. doi:10.1163/22941932-90000226

    Article  Google Scholar 

  • Sidor CG, Popa I, Vlad R, Cherubini P (2015) Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees Struct Funct 29:985–997. doi:10.1007/s00468-015-1178-3

    Article  Google Scholar 

  • Splechtna BE, Dobrys J, Klinka K (2000) Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Ann For Sci 57:89–100. doi:10.1051/forest:2000105

    Article  Google Scholar 

  • Toromani E, Sanxhaku M, Pasho E (2011) Growth responses to climate and drought in silver fir (Abies alba) along an altitudinal gradient in southern Kosovo. Can J For Res 41:1795–1807

    Article  Google Scholar 

  • Vicente-Serrano SM, Camarero JJ, Azorin-Molina C (2014) Diverse responses of forest growth to drought time-scales in the Northern Hemisphere. Global Ecol Biogeogr 23:1019–1030. doi:10.1111/geb.12183

    Article  Google Scholar 

  • Wang JY, Chang XX, Ge SG, Miao YX, Chang ZQ, Zhang H (2001) Vertical distribution of the vegetation and water and heat conditions of Qilian Mountain (northern slope). J Northwest For Univ 16:1–3 (in Chinese, with English abstract)

    Google Scholar 

  • Wang T, Ren HB, Ma KP (2005) Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China. Trees Struct Funct 19:736–742. doi:10.1007/s00468-005-0003-9

    Article  Google Scholar 

  • Wang H, Shao XM, Jiang Y, Fang XQ, Wu SH (2013) The impacts of climate change on the radial growth of Pinus koraiensis along elevations of Changbai Mountain in northeastern China. For Ecol Manag 289:333–340. doi:10.1016/j.foreco.2012.10.023

    Article  Google Scholar 

  • Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    Article  Google Scholar 

  • Xu JM, Lu JX, Bao FC, Evans R, Downes G, Huang RF, Zhao YK (2012) Cellulose microfibril angle variation in Picea crassifolia tree rings improves climate signals on the Tibetan plateau. Trees Struct Funct 26:1007–1016. doi:10.1007/s00468-012-0678-7

    Article  Google Scholar 

  • Xu JM, Lu JX, Evans R, Downes GM (2014) Relationship between ring width and tracheid characteristics in Picea crassifolia: implication in dendroclimatology. Bioresources 9:2203–2213. doi:10.15376/biores.9.2.2203-2213

    CAS  Google Scholar 

  • Yang B, He MH, Melvin TM, Zhao Y, Briffa KR (2013) Climate control on tree growth at the upper and lower treelines: a case study in the Qilian Mountains, Tibetan Plateau. PloS One 8:e69065. doi:10.1371/journal.pone.0069065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YT, Guan HD, Shen MG, Liang W, Jiang L (2015) Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob Change Biol 21:652–665. doi:10.1111/gcb.12778

    Article  Google Scholar 

  • Zhang WT, Jiang Y, Dong MY, Kang MY, Yang HC (2012) Relationship between the radial growth of Picea meyeri and climate along elevations of the Luyashan Mountain in North-Central China. Forest Ecol Manag 265:142–149. doi:10.1016/j.foreco.2011.10.017

    Article  Google Scholar 

  • Zhang H, Shao XM, Zhang Y (2015) Which climatic factors limit radial growth of Qilian juniper at the upper treeline on the northeastern Tibetan Plateau? J Geogr Sci 25:1173–1182. doi:10.1007/s11442-015-1226-3

    Article  Google Scholar 

  • Zheng D (1996) The system of physico-geographical regions of the Qinghai–Xizang (Tibet) Plateau. Sci China (Ser D) 39:410–417 (in Chinese, with English abstract)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Projects No. 41630750). The authors express their thanks to the Foundation, as well as to the forest rangers at Sidalong forestry station for providing assistance in sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jiang, Y., Zhao, S. et al. Lingering response of radial growth of Picea crassifolia to climate at different altitudes in the Qilian Mountains, Northwest China. Trees 31, 455–465 (2017). https://doi.org/10.1007/s00468-016-1467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1467-5

Keywords

Navigation