Skip to main content
Log in

Autotetraploidization enhances drought stress tolerance in two apple cultivars

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

It reports relevant traits of diploid and autotetraploid apple plants (‘Hanfu’ and ‘Gala’) in response to drought. The differences indicate that apple plants (‘Hanfu’ and ‘Gala’) may differ in their response to drought stress depending on ploidy level.

Abstract

The induction of polyploidy ameliorates the adverse effects of drought in many plants. In this study, the tolerance responses of diploid and autotetraploid apple with two cultivars were compared under drought stress treatment induced by polyethylene glycol (PEG)-6000 in the laboratory. Autotetraploid apple plants were previously induced in vitro from the diploid apple (Malus × domestica, 2n = 2x = 34) cultivar ‘Hanfu’ and ‘Gala’ by colchicine treatment. In this study, we elucidated the effects of drought stress on apple by investigating the following parameters in leaves: relative water content (RWC), proline content, malondialdehyde (MDA) content and expression of key aquaporin genes. Under drought stress, autotetraploid apple had higher RWC and chlorophyll fluorescence parameters and lower levels of MDA and proline compared with diploid apple. Key aquaporins genes were induced in leaves in response to PEG6000 treatment, including MdPIP1;1 and MdTIP1;1. The expression of these genes induced under drought stress treatment, and the genes were expressed at lower levels in the autotetraploid than in the diploid. Our combined physiological and molecular data reveal that polyploidization can enhance drought tolerance in ‘Hanfu’ and ‘Gala’ apple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allario T, Brumos J, Colmenero-Flores JM, Iglesias DJ, Pina JA, Navarro L, Talon M, Ollitrault P, Morillon R (2013) Tetraploid rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell Environ 36:856–868

    Article  CAS  PubMed  Google Scholar 

  • Auger DL, Peters E, Brichler JA (2005) A genetic test of bioactive gibberellins as regulators of heterosis in maize. J Hered 96:614–617

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Cao MJ, Xue L, Zhang Y, Xue XQ, Zhou XE, Melcher K, Gao P, Wang FX, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong DF, Zhu JK, Xu HE, Xu Y (2013a) An ABA-mimiching ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23(8):1043–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao ZH, Zhang SZ, Wang RK, Zhang RF, Hao YJ (2013b) Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. PLoS One 8(7):e69955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang L, Zhang Z, Yang H, Li H, Dai H (2007) Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. J Phytopathol 155:431–436

    Article  CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15(12):1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Del Pozo JC, Ramirez-Parra E (2014) Decophering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ 37:2722–2737

    Article  PubMed  Google Scholar 

  • Hodges DM, Delong JM, Forney AF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knipfer T, Besse M, Verdeil JL, Fricke W (2011) Aquaporin-facilitated water uptake in barley (Hordeum vulgare l) roots. J Exp Bot 62(12):4115–4126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leitch A, Leitch I (2008) Genomic plasticity and the diversitu of polyploidy plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu E, Fan C, Zhang C, Fu T, Zhou YM (2012) Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta 236:579–596

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Zhao SH, Qin ZH, He KX, Chen C, Luo YX, Zhou XD (2014) Drought Change Trend Using MODIS TVDI and Its Relationship with Climate Factors in China from 2001 to 2010. J Integr Agr 13(7):1501–1508

    Article  Google Scholar 

  • Liu SY, Chen SM, Chen Y, Guan ZY, Yin DM, Chen FD (2011) In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. Shows an improved level of abiotic stress tolerance. Sci Hortic 127:411–419

    Article  CAS  Google Scholar 

  • Liu CH, Li C, Liang D, Wei ZW, Zhou SS, Wang RC, Ma FW (2012) Differential expression of ion transporters and aquaporins in leabes may contribute to different salt tolerance in Malus species. Plant Physiol Bioch 58:1590165

    Article  Google Scholar 

  • Liu CH, Li C, Liang D, Ma FW, Wang SC, Wang P, Wang RC (2013) Aquaporin expression in response to water-deficit stress in two Malus species: relationship with physiological status and drought tolerance. Plant Growth Regul 70:187–197

    Article  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Sciences 264:421–424

    Article  CAS  Google Scholar 

  • Mock HP, Heller W, Molina A, Neubohn B, Sandermann H Jr, Grimm B (1999) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus. J Biol Chem 274:4231–4238

    Article  CAS  PubMed  Google Scholar 

  • Ntuli NR, Zobolo AM (2008) Effect of water stress on growth of colchicine induced polyploidy Coccinia palmate and lagenaria sphaerica plants. Afr J Biotechnol 7:3548–3652

    CAS  Google Scholar 

  • Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, Fang JY (2010) The impact of climate change in water resource and agriculture in China. Nature 467:43–51

    Article  CAS  PubMed  Google Scholar 

  • Sabir F, Leandro MJ, Martins AP, Loureiro-Dias MC, Moura TF, Soberal G, Prista C (2014) Exploring Three PIPs and three TIPs of grapevine for transport of water and atypical substrates through heterologous expression in aqy-null yeast. PLoS One 9(8):e102087

    Article  PubMed Central  PubMed  Google Scholar 

  • Saleh B, Allario T, Dambier D, Ollitrault P, Morillon R (2008) Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. C R Biologies 331:703–710

    Article  PubMed  Google Scholar 

  • Thorsten K, Matthieu B, Jean-Luc V, Wieland F (2011) Aquaporin-facilitated water uptake in barley (Hordeum vulgare L) roots. J Exp Bot 62(12):4115–4126

    Article  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  CAS  PubMed  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kasier BN, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verkman AS (2013) Aquaporins. Curr Biol 23(2):R52–R55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JL (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y, Hu W, Liu JH, Zhang JB, Jia CH, Miao HX, Xu BY, Jin ZQ (2013) A banana aquaporin gene, MaPIP1;1 is involved in tolerance to drought and salt stresses. BMC Plant Biol 14:59

    Article  Google Scholar 

  • Xue H, Zhang F, Zhang ZH, Fu JF, Wang F, Zhang B, Ma Y (2015) Differences in salt tolerance between diploid and autotetraploid apple seedings exposed to salt stress. Sci Hortic 190:24–30

    Article  CAS  Google Scholar 

  • Yang H, Flower JR, Thompson JR (2013) Sustaining China’s water resources. Science 339:141

    Article  CAS  PubMed  Google Scholar 

  • Yang PM, Huang QC, Qin GY, Zhao SP, Zhou JG (2014) Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica 52(2):193–202

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from China National Natural Science Foundation (No. 31101525) and (No. 31171927); China Postdoctoral Science Foundation Grant (No. 2014M561251); Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province (No. 2014045); Innovation team of Liaoning Province (No. LT2014014); Science and Technology Program of Liaoning Province (No. 2014204004); Science and Technology Program of Liaoning Province (No. 2015207005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by J. Carlson.

F. Zhang and H. Xue contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Xue, H., Lu, X. et al. Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees 29, 1773–1780 (2015). https://doi.org/10.1007/s00468-015-1258-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1258-4

Keywords

Navigation