Skip to main content

Advertisement

Log in

Are the effects of winter temperatures on spring budburst mediated by the bud water status or related to a whole-shoot effect? Insights in the apple tree

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

In apple, the overwintering bud appears hydraulically isolated from the parent stem. Spring budburst seems more related to a whole-shoot effect than to the water status of the individual bud during winter dormancy.

Abstract

The effects of winter temperatures, i.e., during dormancy, on shoot architecture are well known with budburst preferentially in the distal or the proximal part of the parent shoot in cold and mild winter conditions, respectively. However, the link with the overwintering bud water status is still scarcely documented. Our study was developed on four apple (Malus domestica Borkh.) cultivars covering a range of chilling requirements from low (‘Condessa’) to medium (‘Granny Smith’) and high (‘Royal Gala’, ‘Starkrimson’), and maintained in either cold (1,428 h below 7.2 °C) or mild (99 h below 7.2 °C) fluctuating winter temperatures. Our aim was to analyze xylem conductance at the stem-to-bud junction, and relative water content and water potential of the bud itself, for buds situated in the distal third of one-year-old shoots. From dormancy to the pre-budburst stage, xylem conductance at the stem-to-bud junction increased or decreased or did not show consistent changes depending on the cultivar and the winter temperature treatment. Whatever the cultivar, there were no significant trends across dates for the effects of winter temperatures on bud water potential and relative water content. Water potential had negative values, between −4.35 and −2.24 MPa, across cultivars and winter temperature treatments without a consistent relationship with actual spring budburst frequency. These results suggested that lateral buds were hydraulically isolated from the parent stem during winter until a few days before budburst. We discussed that the temperature-related spring budburst was likely more related to a whole-shoot effect mediated by hormonal, hydraulics and/or sugar signaling, than to the individual bud water status during dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barigah TS, Bonhomme M, Lopez D, Traore A, Douris M, Venisse JS, Cochard H, Badel É (2013) Modulation of bud survival in Populus nigra sprouts in response to water stress-induced embolism. Tree Physiol 33:261–274. doi:10.1093/treephys/tpt002

    Article  CAS  PubMed  Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407. doi:10.1093/aob/mcl260

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell AD (1991) Plant form, an illustrated guide to flowering plant morphology. Oxford University Press, Oxford

    Google Scholar 

  • Beveridge CA, Dun EA, Rameau C (2009) Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol 151:985–990. doi:10.1104/pp.109.143909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonhomme M, Peuch M, Ameglio T, Rageau R, Guilliot A, Decourteix M, Alves G, Sakr S, Lacointe A (2009) Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol 30:89–102. doi:10.1093/treephys/tpp103

    Article  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ et al (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493. doi:10.1104/pp.108.134783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Champagnat P (1983) Bud dormancy, correlation between organs, and morphogenesis. Russ J Plant Physiol (Fiziol Rastenii) 30:587–601

    Google Scholar 

  • Champagnat P (1989) Rest and activity in vegetative buds of trees. Ann des Sci For 46:9–26

    Article  Google Scholar 

  • Champagnat P, Barnola P, Lavarenne S (1971) Premières recherches sur le déterminisme de l’acrotonie des végétaux ligneux. Ann des Sci For 28:5–22. doi:10.1051/forest/19710101

    Article  Google Scholar 

  • Cline M (1997) Concepts and terminology of apical dominance. Am J Bot 84:1064–1069

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Coste S, Chanson B, Guelh JM, Nicolini É (2005) Hydraulic architecture correlates with bud organogenesis and primary shoot growth in beech (Fagus sylvatica). Tree Physiol 25:1545–1552

    Article  PubMed  Google Scholar 

  • Cook NC, Jacobs G (1999) Suboptimal winter chilling impedes development of acrotony in apple shoots. HortScience 34:1213–1216

    Google Scholar 

  • Cook NC, Jacobs G (2000) Progression of apple (Malus × domestica Borkh.) bud dormancy in two mild winter climates. J Hort Sci Biotech 75:233–236

    Google Scholar 

  • Cook N, Rabe E, Keulemans J, Jacobs G (1998) The expression of acrotony in deciduous fruit trees: a study of the apple rootstock M.9. J Amer Soc Hort Sci 123:30–34

    Google Scholar 

  • Costes E, Guédon Y (2002) Modelling branching patterns on 1-year-old trunks of six apple cultivars. Ann Bot 89:513–524. doi:10.1093/aob/mcf078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Erez A (1995) Means to compensate for insufficient chilling to improve bloom and leafing. Acta Hortic 395:81–91

    Google Scholar 

  • Etienne H, Carron MP (1991) Water status of callus from Hevea brasiliensis during induction of somatic embryogenesis. Physiol Plant 82:213–218

    Article  Google Scholar 

  • Faust M, Liu D, Wang SY, Stutte GW (1995) Involvement of apical dominance in winter dormancy of apple buds. Acta Hort 395:47–56

    Google Scholar 

  • Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol 149:1929–1944. doi:10.1104/pp.109.135475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleckinger J (1948) Les stades vegétatifs des arbres fruitiers en rapport avec les traitements. Pomol Fr Suppl 81–93

  • Hauagge R, Cummins J (1991) Phenotypic variation of length of bud dormancy in apple cultivars and related Malus species. J Am Soc Hortic Sci 116:100–106

    Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  PubMed  Google Scholar 

  • Janick J (1974) The apple in Java. HortScience 9:13–15

    Google Scholar 

  • Kebrom TH, Brutnell TP, Finlayson SA (2010) Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant Cell Environ 33:48–58. doi:10.1111/j.1365-3040.2009.02050.x

    CAS  PubMed  Google Scholar 

  • Kuprian E, Briceño VF, Wagner J, Neuner G (2014) Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer. Environ Exper Bot 106:4–12

    Article  Google Scholar 

  • Labuschagné I (2002) Genetic variation in chilling requirement in apple progeny. J Am Soc Hortic Sci 127:663–672

    Google Scholar 

  • Lang G, Early J, Martin G, Darnell R (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Lauri PÉ (2007) Differentiation and growth traits associated with acrotony in the apple tree (Malus × domestica, Rosaceae). Am J Bot 94:1273–1281

    Article  PubMed  Google Scholar 

  • Lauri PÉ, Térouanne É (1998) The influence of shoot growth on the pattern of axillary development on the long shoots of young apple trees (Malus domestica Borkh.). Int J Plant Sci 159:283–296

    Article  Google Scholar 

  • Lauri PÉ, Bourdel G, Trottier C, Cochard H (2008) Apple shoot architecture: evidence for strong variability of bud size and composition and hydraulics within a branching zone. New Phytol 178:798–807. doi:10.1111/j.1469-8137.2008.02416.x

    Article  PubMed  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703. doi:10.1111/j.1365-3040.2009.01930.x

    Article  CAS  PubMed  Google Scholar 

  • Leyser O (2010) The power of auxin in plants. Plant Physiol 154:501–505. doi:10.1104/pp.110.161323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lintunen A, Hölttä T, Kulmala M (2013) Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress. Sci Rep 3:2031. doi:10.1038/srep02031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maguylo K, Cook NC, Theron KI (2012) Environment and position of first bud to break on apple shoots affects lateral outgrowth. Trees 26:663–675. doi:10.1007/s00468-011-0634-y

    Article  Google Scholar 

  • Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA 111:6092–6097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mauget J, Rageau R (1988) Bud dormancy and adaptation of apple tree to mild winter climates. Acta Hortic 232:101–108

    Google Scholar 

  • Montoro P, Etienne H, Carron M (1995) Effect of calcium on callus friability and somatic embryogenesis in Hevea brasiliensis Müll. Arg.: relations with callus mineral nutrition, nitrogen metabolism and water. J Exp Bot 46:255–261

    Article  CAS  Google Scholar 

  • Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107:1203–1212. doi:10.1093/aob/mcr069

    Article  PubMed Central  PubMed  Google Scholar 

  • Naor A (2006) Irrigation scheduling and evaluation of tree water status in deciduous orchards. Hortic Rev 32:111–165

    Google Scholar 

  • Napoli C, Beveridge C, Snowden KC (1999) Reevaluating concepts of apical dominance and the control of axillary bud outgrowth. Curr Top Dev Biol 4444:127–169

    Google Scholar 

  • Palmer JW, Privé JP, Tustin DS (2003) Temperature. In: Webster AD, Wertheim SJ (eds) Tromp J. Fundamentals of temperate zone tree fruit production Backhuys, Leiden, pp 217–236

    Google Scholar 

  • Papendick RI, Campbell GS (1981) Theory and measurement of water potential. In: Parr JF, Gardner WR, Elliot LF (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, pp 1–22

    Google Scholar 

  • Pimenta JA (2008) Relações hídricas. In: Kerbauy GB (ed) Fisiologia Vegetal, 2nd edn. Guanabara, Rio de Janeiro, pp 1–32

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed July 2014

  • Schmitz JD, Guédon Y, Herter FG, Leite GB, Lauri PÉ (2014) Exploring bud dormancy completion with a combined architectural and phenological analysis: the case of apple trees in contrasting winter temperature conditions. Am J Bot 101:398–407. doi:10.3732/ajb.1300335

    Article  PubMed  Google Scholar 

  • Sperry JS, Sullivan JE (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol 100:605–613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van den Ende W (2014) Sugars take a central position in plant growth, development and stress responses. A focus on apical dominance. Front Plant Sci 5:1–3. doi:10.3389/fpls.2014.00313

    Google Scholar 

  • Weinberger J (1950) Chilling requirements of peach varieties. Proc Soc Hortic Sci 56:122–128

    Google Scholar 

  • Wescor (2001) HR-33T Dew point microvoltmeter instruction/service manual. © 2001 Wescor, Inc

  • Yoda K, Wagatsuma H, Suzuki M, Suzuki H (2003) Stem diameter changes before bud opening in Zelkova serrata saplings. J Plant Res 116:13–18. doi:10.1007/s10265-002-0065-3

    PubMed  Google Scholar 

Download references

Author contribution statement

JD Schmitz collected the data, made most of the analyses and interpretation of results, and wrote a first draft of the manuscript. M Bonhomme and H Cochard contributed to the interpretation of results. FG Herter, GB Leite and JL Regnard defined the main lines of the experiment. PE Lauri managed the study, and contributed to the analyses and interpretation of results, and to the writing of the manuscript.

Acknowledgments

This work was partly funded by the French-Brazil bilateral CAPES-COFECUB Research Program 20092013, n° Sv 686/10. [CAPES (Brazil, Coordination for the Improvement of Higher Level Personnel); COFECUB (French Committee for the Evaluation of Academic and Scientific Cooperation with Brazil)], and by the CNPq (National Council for Scientific and Technological Development) for grant support in Brazil.The authors thank Sébastien Martinez and Gilbert Garcia for taking care of the trees and help in measurements, Dr Thierry Améglio for helpful suggestions, and two anonymous reviewers for helpful comments on a first version of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Eric Lauri.

Additional information

Communicated by G. Wieser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, J.D., Bonhomme, M., Cochard, H. et al. Are the effects of winter temperatures on spring budburst mediated by the bud water status or related to a whole-shoot effect? Insights in the apple tree. Trees 29, 675–682 (2015). https://doi.org/10.1007/s00468-014-1145-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1145-4

Keywords

Navigation