Skip to main content
Log in

Beyond the kidney: extra-renal manifestations of monogenic nephrolithiasis and their significance

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

The objective of this study was to explore the frequency of occurrence of extra-renal manifestations associated with monogenic nephrolithiasis.

Methods

A literature review was conducted to identify genes that are monogenic causes of nephrolithiasis. The Online Mendelian Inheritance in Man (OMIM) database was used to identify associated diseases and their properties. Disease phenotypes were ascertained using OMIM clinical synopses and sorted into 24 different phenotype categories as classified in OMIM. Disease phenotypes caused by the same gene were merged into a phenotypic profile of a gene (PPG) such that one PPG encompasses all related disease phenotypes for a specific gene. The total number of PPGs involving each phenotype category was measured, and the median phenotype category was determined. Phenotype categories were classified as overrepresented or underrepresented if the number of PPGs involving them was higher or lower than the median, respectively. Chi-square test was conducted to determine whether the number of PPGs affecting a given category significantly deviated from the median.

Results

Fifty-five genes were identified as monogenic causes of nephrolithiasis. A total of six significantly overrepresented and three significantly underrepresented phenotype categories were identified (p < 0.05). Four phenotypic categories (growth, neurological, skeletal, and abdomen/gastrointestinal) are significantly overrepresented after Bonferroni correction for multiple comparisons (p < 0.002). Among all phenotypes, impaired growth is the most common manifestation.

Conclusion

Recognizing the extra-renal manifestations associated with monogenic causes of kidney stones is critical for earlier diagnosis and optimal care in patients.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets analyzed during the current study is available at OMIM (https://www.omim.org/search/advanced/clinicalSynopsis) and the Human Protein Atlas database (https://www.proteinatlas.org/).

References

  1. Alelign T, Petros B (2018) Kidney stone disease: an update on current concepts. Adv Urol 2018:3068365. https://doi.org/10.1155/2018/3068365

    Article  PubMed  PubMed Central  Google Scholar 

  2. Scales CD, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. Eur Urol 62:160–165. https://doi.org/10.1016/j.eururo.2012.03.052

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tundo G, Vollstedt A, Meeks W, Pais V (2021) Beyond prevalence: annual cumulative incidence of kidney stones in the United States. J Urol 205:1704–1709. https://doi.org/10.1097/JU.0000000000001629

    Article  PubMed  Google Scholar 

  4. Dwyer ME, Krambeck AE, Bergstralh EJ et al (2012) Temporal trends in incidence of kidney stones among children: a 25-year population based study. J Urol 188:247–252. https://doi.org/10.1016/j.juro.2012.03.021

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ward JB, Feinstein L, Pierce C et al (2019) Pediatric urinary stone disease in the United States: the urologic diseases in America project. Urology 129:180–187. https://doi.org/10.1016/j.urology.2019.04.012

    Article  PubMed  Google Scholar 

  6. Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344. https://doi.org/10.1016/S0140-6736(06)68071-9

    Article  CAS  PubMed  Google Scholar 

  7. Goldfarb DS, Avery AR, Beara-Lasic L et al (2018) A twin study of genetic influences on nephrolithiasis in women and men. Kidney Int Rep 4:535–540. https://doi.org/10.1016/j.ekir.2018.11.017

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lieske JC, Wang X (2019) Heritable traits that contribute to nephrolithiasis. Urolithiasis 47:5–10. https://doi.org/10.1007/s00240-018-1095-1

    Article  PubMed  Google Scholar 

  9. Howles SA, Thakker RV (2020) Genetics of kidney stone disease. Nat Rev Urol 17:407–421. https://doi.org/10.1038/s41585-020-0332-x

    Article  PubMed  Google Scholar 

  10. Daga A, Majmundar AJ, Braun DA et al (2018) Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93:204–213. https://doi.org/10.1016/j.kint.2017.06.025

    Article  CAS  PubMed  Google Scholar 

  11. Huang L, Qi C, Zhu G et al (2022) Genetic testing enables a precision medicine approach for nephrolithiasis and nephrocalcinosis in pediatrics: a single-center cohort. Mol Genet Genomics 297:1049–1061. https://doi.org/10.1007/s00438-022-01897-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwaderer AL, Kusumi K, Ayoob RM (2014) Pediatric nephrolithiasis and the link to bone metabolism. Curr Opin Pediatr 26:207–214. https://doi.org/10.1097/MOP.0000000000000069

    Article  CAS  PubMed  Google Scholar 

  13. Ferraro PM, Bargagli M, Trinchieri A, Gambaro G (2020) Risk of kidney stones: influence of dietary factors, dietary patterns, and vegetarian-vegan diets. Nutrients 12:E779. https://doi.org/10.3390/nu12030779

    Article  CAS  Google Scholar 

  14. Alexander RT, Hemmelgarn BR, Wiebe N et al (2012) Kidney stones and kidney function loss: a cohort study. BMJ 345:e5287. https://doi.org/10.1136/bmj.e5287

    Article  PubMed  PubMed Central  Google Scholar 

  15. Amberger JS, Bocchini CA, Schiettecatte F et al (2015) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:D789-798. https://doi.org/10.1093/nar/gku1205

    Article  CAS  PubMed  Google Scholar 

  16. Vasudevan V, Samson P, Smith AD, Okeke Z (2017) The genetic framework for development of nephrolithiasis. Asian J Urol 4:18–26. https://doi.org/10.1016/j.ajur.2016.11.003

    Article  PubMed  Google Scholar 

  17. Bhojani N, Bjazevic J, Wallace B et al (2022) UPDATE – Canadian Urological Association guideline: evaluation and medical management of kidney stones. Can Urol Assoc J 16:175–188. https://doi.org/10.5489/cuaj.7872

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maalouf NM, Tondapu P, Guth ES et al (2010) Hypocitraturia and hyperoxaluria after Roux-en-Y gastric bypass surgery. J Urol 183:1026–1030. https://doi.org/10.1016/j.juro.2009.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Curhan GC, Willett WC, Rimm EB, Stampfer MJ (1997) Family history and risk of kidney stones. J Am Soc Nephrol 8:1568–1573. https://doi.org/10.1681/ASN.V8101568

    Article  CAS  PubMed  Google Scholar 

  20. Jungers P, Joly D, Blanchard A et al (2008) Inherited monogenic kidney stone diseases: recent diagnostic and therapeutic advances. Nephrol Ther 4:231–255. https://doi.org/10.1016/j.nephro.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  21. Ferraro PM, Taylor EN, Eisner BH et al (2013) History of kidney stones and the risk of coronary heart disease. JAMA 310:408–415. https://doi.org/10.1001/jama.2013.8780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jaeger P, Lippuner K, Casez JP et al (1994) Low bone mass in idiopathic renal stone formers: magnitude and significance. J Bone Miner Res 9:1525–1532. https://doi.org/10.1002/jbmr.5650091004

    Article  CAS  PubMed  Google Scholar 

  23. Krieger NS, Bushinsky DA (2013) The relation between bone and stone formation. Calcif Tissue Int 93:374–381. https://doi.org/10.1007/s00223-012-9686-2

    Article  CAS  PubMed  Google Scholar 

  24. Pietschmann F, Breslau NA, Pak CY (1992) Reduced vertebral bone density in hypercalciuric nephrolithiasis. J Bone Miner Res 7:1383–1388. https://doi.org/10.1002/jbmr.5650071205

    Article  CAS  PubMed  Google Scholar 

  25. Sella S, Cattelan C, Realdi G, Giannini S (2008) Bone disease in primary hypercalciuria. Clin Cases Miner Bone Metab 5:118–126

    PubMed  PubMed Central  Google Scholar 

  26. Schott C, Pourtousi A, Connaughton DM (2022) Monogenic causation of pediatric nephrolithiasis. Front Urol 2:1075711. https://doi.org/10.3389/fruro.2022.1075711

    Article  Google Scholar 

  27. Bhowmick SS, Lang AE (2020) Movement disorders and renal diseases. Mov Disord Clin Pract 7:763–779. https://doi.org/10.1002/mdc3.13005

    Article  PubMed  PubMed Central  Google Scholar 

  28. Attree O, Olivos IM, Okabe I et al (1992) The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358:239–242. https://doi.org/10.1038/358239a0

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Romani M, Micalizzi A, Valente EM (2013) Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol 12:894–905. https://doi.org/10.1016/S1474-4422(13)70136-4

    Article  PubMed  Google Scholar 

  30. Bockenhauer D, Feather S, Stanescu HC et al (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970. https://doi.org/10.1056/NEJMoa0810276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rumsby G (2016) Genetic defects underlying renal stone disease. Int J Surg 36:590–595. https://doi.org/10.1016/j.ijsu.2016.11.015

    Article  PubMed  Google Scholar 

  32. Paolella G, Santamaria R, Buono P, Salvatore F (1987) Mapping of a restriction fragment length polymorphism within the human aldolase B gene. Hum Genet 77:115–117. https://doi.org/10.1007/BF00272375

    Article  CAS  PubMed  Google Scholar 

  33. Hendy GN, D’Souza-Li L, Yang B et al (2000) Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 16:281–296. https://doi.org/10.1002/1098-1004(200010)16:4<281::AID-HUMU1>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  34. Madore F, Stampfer MJ, Rimm EB, Curhan GC (1998) Nephrolithiasis and risk of hypertension. Am J Hypertens 11:46–53. https://doi.org/10.1016/s0895-7061(97)00371-3

    Article  CAS  PubMed  Google Scholar 

  35. Assimos D, Krambeck A, Miller NL et al (2016) Surgical management of stones: American Urological Association/Endourological Society Guideline, PART I. J Urol 196:1153–1160. https://doi.org/10.1016/j.juro.2016.05.090

    Article  PubMed  Google Scholar 

  36. Skolarikos A, Straub M, Knoll T et al (2015) Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol 67:750–763. https://doi.org/10.1016/j.eururo.2014.10.029

    Article  PubMed  Google Scholar 

  37. Bonzo JR, Tasian GE (2017) The emergence of kidney stone disease during childhood-impact on adults. Curr Urol Rep 18:44. https://doi.org/10.1007/s11934-017-0691-x

    Article  PubMed  Google Scholar 

  38. Hopp K, Cogal AG, Bergstralh EJ et al (2015) Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J Am Soc Nephrol 26:2559–2570. https://doi.org/10.1681/ASN.2014070698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu C-HW, Badreddine J, Chang J et al (2023) Population genetics analysis of SLC3A1 and SLC7A9 revealed the etiology of cystine stone may be more than what our current genetic knowledge can explain. Urolithiasis 51:101. https://doi.org/10.1007/s00240-023-01473-z

    Article  CAS  PubMed  Google Scholar 

  40. Sas DJ, Enders FT, Mehta RA et al (2020) Clinical features of genetically confirmed patients with primary hyperoxaluria identified by clinical indication versus familial screening. Kidney Int 97:786–792. https://doi.org/10.1016/j.kint.2019.11.023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All listed authors contributed to this manuscript through data collection, analysis, interpretation, writing, and reviewing the manuscript.

Corresponding author

Correspondence to Chen-Han Wilfred Wu.

Ethics declarations

Conflict of interest

Donald Bodner owns stock shares in Fortec Litho Inc. The other authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CH.W., Badreddine, J., Su, E. et al. Beyond the kidney: extra-renal manifestations of monogenic nephrolithiasis and their significance. Pediatr Nephrol 39, 1429–1434 (2024). https://doi.org/10.1007/s00467-023-06242-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06242-z

Keywords

Navigation