Skip to main content
Log in

Long-term kidney outcomes in pediatric continuous-flow ventricular assist device patients

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Continuous-flow ventricular assist devices (CF-VADs) are used increasingly in pediatric end-stage heart failure (ESHF) patients. Alongside common risk factors like oxidant injury from hemolysis, non-pulsatile flow constitutes a unique circulatory stress on kidneys. Post-implantation recovery after acute kidney injury (AKI) is commonly reported, but long-term kidney outcomes or factors implicated in the evolution of chronic kidney disease (CKD) with prolonged CF-VAD support are unknown.

Methods

We studied ESHF patients supported > 90 days on CF-VAD from 2008 to 2018. The primary outcome was CKD (per Kidney Disease Improving Global Outcomes (KDIGO) criteria). Secondary outcomes included AKI incidence post-implantation and CKD evolution in the 6–12 months of CF-VAD support.

Results

We enrolled 134 patients; 84/134 (63%) were male, median age was 13 [IQR 9.9, 15.9] years, 72/134 (54%) had preexisting CKD at implantation, and 85/134 (63%) had AKI. At 3 months, of the 91/134 (68%) still on a CF-VAD, 34/91 (37%) never had CKD, 13/91 (14%) developed de novo CKD, while CKD persisted or worsened in 49% (44/91). Etiology of heart failure, extracorporeal membrane oxygenation use, duration of CF-VAD, AKI history, and kidney replacement therapy were not associated with different CKD outcomes. Mortality was higher in those with AKI or preexisting CKD.

Conclusions

In the first multicenter study to focus on kidney outcomes for pediatric long-term CF-VAD patients, preimplantation CKD and peri-implantation AKI were common. Both de novo CKD and worsening CKD can happen on prolonged CF-VAD support. Proactive kidney function monitoring and targeted follow-up are important to optimize outcomes.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O’Connor MJ, Rossano JW (2014) Ventricular assist devices in children. Curr Opin Cardiol 29:113–121

    Article  PubMed  Google Scholar 

  2. Rossano JW, Cherikh WS, Chambers DC et al (2018) The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: twenty-first pediatric heart transplantation report-2018; Focus theme: Multiorgan Transplantation. J Heart Lung Transplant 37:1184–1195

    Article  PubMed  Google Scholar 

  3. Wehman B, Stafford KA, Bittle GJ et al (2016) Modern outcomes of mechanical circulatory support as a bridge to pediatric heart transplantation. Ann Thorac Surg 101:2321–2327

    Article  PubMed  PubMed Central  Google Scholar 

  4. Burki S, Adachi I (2017) Pediatric ventricular assist devices: current challenges and future prospects. Vasc Health Risk Manag 13:177–185

    Article  PubMed  PubMed Central  Google Scholar 

  5. May LJ, Montez-Rath ME, Yeh J et al (2016) Impact of ventricular assist device placement on longitudinal renal function in children with end-stage heart failure. J Heart Lung Transplant 35:449–456

    Article  PubMed  Google Scholar 

  6. Friedland-Little JM, Hong BJ, Gossett JG et al (2018) Changes in renal function after left ventricular assist device placement in pediatric patients: a Pedimacs analysis. J Heart Lung Transplant 37:1218–1225

    Article  PubMed  Google Scholar 

  7. Fraser CD Jr, Jaquiss RD, Rosenthalet DN et al (2012) Prospective trial of a pediatric ventricular assist device. N Engl J Med 367:532–541

    Article  CAS  PubMed  Google Scholar 

  8. Prodhan P, Bhutta AT, Gossett JM et al (2013) Comparative effects of ventricular assist device and extracorporeal membrane oxygenation on renal function in pediatric heart failure. Ann Thorac Surg 96:1428–1434

    Article  PubMed  Google Scholar 

  9. Demirozu ZT, Etheridge WB, Radovancevic R et al (2011) Results of HeartMate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J Heart Lung Transplant 30:182–187

    Article  PubMed  Google Scholar 

  10. Russell SD, Rogers JG, Milano CA et al (2009) Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation 120:2352–2357

    Article  PubMed  Google Scholar 

  11. Hasin T, Topilsky Y, Schirger JA et al (2012) Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol 59:26–36

    Article  PubMed  Google Scholar 

  12. Sandner SE, Zimpfer D, Zrunek P et al (2008) Renal function after implantation of continuous versus pulsatile flow left ventricular assist devices. J Heart Lung Transplant 27:469–473

    Article  PubMed  Google Scholar 

  13. Singh M, Shullo M, Kormos RL et al (2011) Impact of renal function before mechanical circulatory support on posttransplant renal outcomes. Ann Thorac Surg 91:1348–1354

    Article  PubMed  Google Scholar 

  14. Sandner SE, Zimpfer D, Zrunek P et al (2009) Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg 87:1072–1078

    Article  PubMed  Google Scholar 

  15. Muslem R, Caliskan K, Akin S et al (2018) Acute kidney injury and 1-year mortality after left ventricular assist device implantation. J Heart Lung Transplant 37:116–123

    Article  PubMed  Google Scholar 

  16. Patel AM, Adeseun GA, Ahmed I et al (2013) Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol 8:484–496

    Article  PubMed  Google Scholar 

  17. Givens RC, Topkara VK (2018) Renal risk stratification in left ventricular assist device therapy. Expert Rev Med Devices 15:27–33

    Article  CAS  PubMed  Google Scholar 

  18. Hollander SA, Cantor RS, Sutherland SM et al (2019) Renal injury and recovery in pediatric patients after ventricular assist device implantation and cardiac transplant. Pediatr Transplant 23:e13477

    Article  PubMed  Google Scholar 

  19. Almond CS, Buchholz H, Massicotte P et al (2011) Berlin Heart EXCOR Pediatric ventricular assist device Investigational Device Exemption study: study design and rationale. Am Heart J 162:425–35.e6

    Article  PubMed  Google Scholar 

  20. Morales DLS, Rossano JW, VanderPluym C et al (2019) Third annual pediatric interagency registry for mechanical circulatory support (Pedimacs) report: preimplant characteristics and outcomes. Ann Thorac Surg 107:993–1004

    Article  PubMed  Google Scholar 

  21. Morales DLS, Adachi I, Peng DM et al (2020) Fourth annual pediatric interagency registry for mechanical circulatory support (Pedimacs) report. Ann Thorac Surg 110:1819–1831

    Article  PubMed  Google Scholar 

  22. Conway J, Miera O, Adachi I et al (2018) Worldwide experience of a durable centrifugal flow pump in pediatric patients. Semin Thorac Cardiovasc Surg 30:327–335

    Article  PubMed  Google Scholar 

  23. Sutcliffe DL, Pruitt E, Cantor RS et al (2018) Post-transplant outcomes in pediatric ventricular assist device patients: a PediMACS-Pediatric Heart Transplant Study linkage analysis. J Heart Lung Transplant 37:715–722

    Article  PubMed  Google Scholar 

  24. Puri K, Andes MM, Tume SC et al (2019) Characteristics and outcomes of pediatric patients supported with ventricular assist device-a multi-institutional analysis. Pediatr Crit Care Med 20:744–752

    Article  PubMed  Google Scholar 

  25. Rosenthal DN, Almond CS, Jaquiss RD et al (2016) Adverse events in children implanted with ventricular assist devices in the United States: data from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Heart Lung Transplant 35:569–577

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schwartz GJ, Muñoz A, Schneider MF et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mian AN, Schwartz GJ (2017) Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis 24:348–356

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cuzzolin L, Fanos V, Pinna B et al (2006) Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr Nephrol 21:931–938

    Article  PubMed  Google Scholar 

  29. Pasquali M, Bellasi A, Cianciolo G et al (2018) [Update 2017 of the KDIGO guidelines on chronic kidney disease-mineral and bone disorder (ckd-mbd). What are the real changes?]. G Ital Nefrol 35:2018-vol3

  30. Devarajan P (2013) Pediatric acute kidney injury: different from acute renal failure but how and why. Curr Pediatr Rep 1:34–40

    Article  PubMed  Google Scholar 

  31. Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120:c179–c184

    Article  PubMed  Google Scholar 

  32. Idrovo A, Afonso N, Price J et al (2021) Kidney replacement therapy in pediatric patients on mechanical circulatory support: challenges for the pediatric nephrologist. Pediatr Nephrol 36:1109–1117

    Article  PubMed  Google Scholar 

  33. Heinzel FR, Hegemann N, Hohendanner F et al (2020) Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function. Cardiovasc Diagn Ther 10:1541–1560

    Article  PubMed  PubMed Central  Google Scholar 

  34. Adachi I, Khan MS, Guzmán-Pruneda FA et al (2015) Evolution and impact of ventricular assist device program on children awaiting heart transplantation. Ann Thorac Surg 99:635–640

    Article  PubMed  Google Scholar 

  35. Sensirivatana R, Kingwatanakul P, Futrakul P (1999) Renal perfusion and disease progression. J Med Assoc Thai 82:496–505

    CAS  PubMed  Google Scholar 

  36. Leitch CA (2000) Growth, nutrition and energy expenditure in pediatric heart failure. Prog Pediatr Cardiol 11:195–202

    Article  CAS  PubMed  Google Scholar 

  37. Tsintoni A, Dimitriou G, Karatza AA (2020) Nutrition of neonates with congenital heart disease: existing evidence, conflicts and concerns. J Matern Fetal Neonatal Med 33:2487–2492

    Article  PubMed  Google Scholar 

  38. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    Article  CAS  PubMed  Google Scholar 

  39. Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526

    Article  CAS  PubMed  Google Scholar 

  40. Finney H, Newman DJ, Gruber W et al (1997) Initial evaluation of cystatin C measurement by particle-enhanced immunonephelometry on the Behring nephelometer systems (BNA, BN II). Clin Chem 43:1016–1022

    Article  CAS  PubMed  Google Scholar 

  41. Kyhse-Andersen J, Schmidt C, Nordin G et al (1994) Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 40:1921–1926

    Article  CAS  PubMed  Google Scholar 

  42. Newman DJ (2002) Cystatin C. Ann Clin Biochem 39(Pt 2):89–104

    Article  CAS  PubMed  Google Scholar 

  43. Gubb S, Holmes J, Smith G et al (2020) Acute kidney injury in children based on electronic alerts. J Pediatr 220:14-20.e4

    Article  PubMed  Google Scholar 

  44. Goldstein SL, Devarajan P (2010) Pediatrics: acute kidney injury leads to pediatric patient mortality. Nat Rev Nephrol 6:393–394

    Article  PubMed  Google Scholar 

  45. Schneider J, Khemani R, Grushkin C, Bart R (2010) Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 38:933–939

    Article  CAS  PubMed  Google Scholar 

  46. Chen S, Dykes JC, McElhinney DB et al (2017) Haemodynamic profiles of children with end-stage heart failure. Eur Heart J 38:2900–2909

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from all centers including Texas Children’s Hospital-Baylor College of Medicine, St. Louis Children’s Hospital-Washington University, and Lucile Packard Hospital-Stanford University for data collection and for making this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Idrovo.

Ethics declarations

Conflict of interest

IA (Iki Adachi) serves as a consultant/proctor for Berlin Heart, Inc., Medtronic, Inc., Abbott, Inc., and Jarvik, Inc. AAA’s (Ayse Akcan-Arikan) institution has received research funding from Bioporto, Baxter, Medtronic, and NIAID unrelated to this work. The other authors declared no potential conflicts of interest with respect to the review, authorship, and/or publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical abstract (PPTX 190 KB)

Supplementary Figures (DOCX 115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrovo, A., Hollander, S.A., Neumayr, T.M. et al. Long-term kidney outcomes in pediatric continuous-flow ventricular assist device patients. Pediatr Nephrol 39, 1289–1300 (2024). https://doi.org/10.1007/s00467-023-06190-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-023-06190-8

Keywords

Navigation