Skip to main content

Advertisement

Log in

Association of early hyponatremia and the development of acute kidney injury in critically ill children

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Hyponatremia is an independent prognostic factor for mortality; however, the reason for this remains unclear. An observed relationship between hyponatremia and the development of acute kidney injury (AKI) has been reported in certain disease states, but hyponatremia has not been evaluated as a predictor of AKI in critically ill patients or children.

Methods

This is a single-center retrospective cohort study of critically ill children admitted to a tertiary care center. We performed regression analysis to assess the association between hyponatremia at ICU admission and the development of new or worsening stage 2 or 3 (severe) AKI on days 2–3 following ICU admission.

Results

Among the 5057 children included in the study, early hyponatremia was present in 13.3% of children. Severe AKI occurred in 9.2% of children with hyponatremia compared to 4.5% of children with normonatremia. Following covariate adjustment, hyponatremia at ICU admission was associated with a 75% increase in the odds of developing severe AKI when compared to critically ill children with normonatremia (aOR 1.75, 95% CI 1.28–2.39). Evaluating sodium levels continuously, for every 1 mEq/L decrease in serum sodium level, there was a 0.05% increase in the odds of developing severe AKI (aOR 1.05, 95% CI 1.02–1.08). Hyponatremic children who developed severe AKI had a higher frequency of kidney replacement therapy, AKI or acute kidney disease at hospital discharge, and hospital mortality when compared to those without.

Conclusions

Hyponatremia at ICU admission is associated with the development of new or worsening AKI in critically ill children.

Graphical abstract

A higher resolution version of the Graphical abstract is available as Supplementary information

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data is not publicly available.

Code availability

Code for the statistical analysis can be provided upon request.

References

  1. Al-Sofyani KA (2019) Prevalence and clinical significance of hyponatremia in pediatric intensive care. J Pediatr Intensive Care 8:130–137. https://doi.org/10.1055/s-0038-1676635PMC6687457

    Article  PubMed  PubMed Central  Google Scholar 

  2. Au AK, Ray PE, McBryde KD, Newman KD et al (2008) Incidence of postoperative hyponatremia and complications in critically-ill children treated with hypotonic and normotonic solutions. J Pediatr 152:33–38. https://doi.org/10.1016/j.jpeds.2007.08.040

    Article  CAS  PubMed  Google Scholar 

  3. Kaufman J, Phadke D, Tong S, Eshelman J et al (2017) Clinical associations of early dysnatremias in critically ill neonates and infants undergoing cardiac surgery. Pediatr Cardiol 38:149–154. https://doi.org/10.1007/s00246-016-1495-3

    Article  PubMed  Google Scholar 

  4. Sachdev A, Pandharikar N, Gupta D, Gupta N et al (2017) Hospital-acquired hyponatremia in pediatric intensive care unit. Indian J Crit Care Med 21:599–603. https://doi.org/10.4103/ijccm.IJCCM_131_17PMC5613613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elliman MG, Vongxay O, Soumphonphakdy B, Gray A (2019) Hyponatraemia in a Lao paediatric intensive care unit: prevalence, associations and intravenous fluid use. J Paediatr Child Health 55:695–700. https://doi.org/10.1111/jpc.14278

    Article  PubMed  Google Scholar 

  6. Lee SW, Baek SH, Ahn SY, Na KY et al (2016) The effects of pre-existing hyponatremia and subsequent-developing acute kidney injury on in-hospital mortality: a retrospective cohort study. PLoS ONE 11:e0162990. https://doi.org/10.1371/journal.pone.0162990PMC5021268

    Article  PubMed  PubMed Central  Google Scholar 

  7. Funk GC, Lindner G, Druml W, Metnitz B et al (2010) Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med 36:304–311. https://doi.org/10.1007/s00134-009-1692-0

    Article  PubMed  Google Scholar 

  8. Holland-Bill L, Christiansen CF, Heide-Jorgensen U, Ulrichsen SP et al (2015) Hyponatremia and mortality risk: a Danish cohort study of 279 508 acutely hospitalized patients. Eur J Endocrinol 173:71–81. https://doi.org/10.1530/eje-15-0111

    Article  CAS  PubMed  Google Scholar 

  9. Mohan S, Gu S, Parikh A, Radhakrishnan J (2013) Prevalence of hyponatremia and association with mortality: results from NHANES. Am J Med 126:1127–37.e1. https://doi.org/10.1016/j.amjmed.2013.07.021PMC3933395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Price JF, Kantor PF, Shaddy RE, Rossano JW et al (2016) Incidence, severity, and association with adverse outcome of hyponatremia in children hospitalized with heart failure. Am J Cardiol 118:1006–1010. https://doi.org/10.1016/j.amjcard.2016.07.014

    Article  PubMed  Google Scholar 

  11. Guarner J, Hochman J, Kurbatova E, Mullins R (2011) Study of outcomes associated with hyponatremia and hypernatremia in children. Pediatr Dev Pathol 14:117–123. https://doi.org/10.2350/10-06-0858-oa.1

    Article  PubMed  Google Scholar 

  12. Ayus JC, Wheeler JM, Arieff AI (1992) Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 117:891–897. https://doi.org/10.7326/0003-4819-117-11-891

    Article  CAS  PubMed  Google Scholar 

  13. Arieff AI, Ayus JC, Fraser CL (1992) Hyponatraemia and death or permanent brain damage in healthy children. BMJ 304:1218–1222. https://doi.org/10.1136/bmj.304.6836.1218PMC1881802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ayus JC, Varon J, Arieff AI (2000) Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med 132:711–714. https://doi.org/10.7326/0003-4819-132-9-200005020-00005

    Article  CAS  PubMed  Google Scholar 

  15. Ayus JC, Arieff AI (1995) Pulmonary complications of hyponatremic encephalopathy. Noncardiogenic pulmonary edema and hypercapnic respiratory failure. Chest 107:517–521. https://doi.org/10.1378/chest.107.2.517

    Article  CAS  PubMed  Google Scholar 

  16. Portales-Castillo I, Sterns RH (2019) Allostasis and the clinical manifestations of mild to moderate chronic hyponatremia: no good adaptation goes unpunished. Am J Kidney Dis 73:391–399. https://doi.org/10.1053/j.ajkd.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  17. Swart RM, Hoorn EJ, Betjes MG, Zietse R (2011) Hyponatremia and inflammation: the emerging role of interleukin-6 in osmoregulation. Nephron Physiol 118:45–51. https://doi.org/10.1159/000322238

    Article  CAS  PubMed  Google Scholar 

  18. Hackworth WA, Heuman DM, Sanyal AJ, Fisher RA et al (2009) Effect of hyponatraemia on outcomes following orthotopic liver transplantation. Liver Int 29:1071–1077. https://doi.org/10.1111/j.1478-3231.2009.01982.x

    Article  CAS  PubMed  Google Scholar 

  19. Aronson D, Darawsha W, Promyslovsky M, Kaplan M et al (2014) Hyponatraemia predicts the acute (type 1) cardio-renal syndrome. Eur J Heart Fail 16:49–55. https://doi.org/10.1093/eurjhf/hft123

    Article  CAS  PubMed  Google Scholar 

  20. Liborio AB, Silva GB Jr, Silva CG, Lima Filho FJ et al (2012) Hyponatremia, acute kidney injury, and mortality in HIV-related toxoplasmic encephalitis. Braz J Infect Dis 16:558–563. https://doi.org/10.1016/j.bjid.2012.08.015

    Article  PubMed  Google Scholar 

  21. Daher EF, Silva GB Jr, Karbage NN, Carvalho PC Jr et al (2009) Predictors of oliguric acute kidney injury in leptospirosis. A retrospective study on 196 consecutive patients. Nephron Clin Pract 112:c25-30. https://doi.org/10.1159/000210571

    Article  PubMed  Google Scholar 

  22. Salahudeen AK, Doshi SM, Pawar T, Nowshad G et al (2013) Incidence rate, clinical correlates, and outcomes of AKI in patients admitted to a comprehensive cancer center. Clin J Am Soc Nephrol 8:347–354. https://doi.org/10.2215/CJN.03530412PMC3586962

    Article  PubMed  Google Scholar 

  23. Joyce EL, DeAlmeida DR, Fuhrman DY, Priyanka P et al (2019) eResearch in acute kidney injury: a primer for electronic health record research. Nephrol Dial Transplant 34:401–407. https://doi.org/10.1093/ndt/gfy052PMC6399481

    Article  CAS  PubMed  Google Scholar 

  24. Kidney Disease (2012) Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter., Suppl 2:1–138

  25. Joyce EL, Crana CM, Yabes J, Kellum JA (2020) Validation of an electronic Pediatric Index of Mortality 2 score in a mixed quaternary PICU. Pediatr Crit Care Med 21:e572–e575. https://doi.org/10.1097/PCC.0000000000002347PMC7417868

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fogo AB, Lusco MA, Najafian B, Alpers CE (2017) AJKD atlas of renal pathology: osmotic tubular injury. Am J Kidney Dis 69:e11–e12. https://doi.org/10.1053/j.ajkd.2016.12.003

    Article  PubMed  Google Scholar 

  27. Dmitrieva NI, Burg MB (2007) Osmotic stress and DNA damage. Methods Enzymol 428:241–252. https://doi.org/10.1016/s0076-6879(07)28013-9

    Article  CAS  PubMed  Google Scholar 

  28. Burg MB (2002) Response of renal inner medullary epithelial cells to osmotic stress. Comp Biochem Physiol A Mol Integr Physiol 133:661–666. https://doi.org/10.1016/s1095-6433(02)00203-9

    Article  PubMed  Google Scholar 

  29. Dohanics J, Hoffman GE, Verbalis JG (1996) Chronic hyponatremia reduces survival of magnocellular vasopressin and oxytocin neurons after axonal injury. J Neurosci 16:2373–2380

    Article  CAS  Google Scholar 

  30. Barsony J, Sugimura Y, Verbalis JG (2011) Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J Biol Chem 286:10864–10875. https://doi.org/10.1074/jbc.M110.155002PMC3060537

    Article  CAS  PubMed  Google Scholar 

  31. Fujii N, Matsuo Y, Matsunaga T, Endo S et al (2016) Hypotonic stress-induced down-regulation of claudin-1 and -2 mediated by dephosphorylation and clathrin-dependent endocytosis in renal tubular epithelial cells. J Biol Chem 291:24787–24799. https://doi.org/10.1074/jbc.M116.728196PMC5114426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wheeler DS, Devarajan P, Ma Q, Harmon K et al (2008) Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med 36:1297–1303. https://doi.org/10.1097/CCM.0b013e318169245aPMC2757115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herrero-Morin JD, Malaga S, Fernandez N, Rey C et al (2007) Cystatin C and beta2-microglobulin: markers of glomerular filtration in critically ill children. Crit Care 11:R59. https://doi.org/10.1186/cc5923PMC2206414

    Article  PubMed  PubMed Central  Google Scholar 

  34. Washburn KK, Zappitelli M, Arikan AA, Loftis L et al (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23:566–572. https://doi.org/10.1093/ndt/gfm638

    Article  CAS  PubMed  Google Scholar 

  35. Basu RK, Zappitelli M, Brunner L, Wang Y et al (2014) Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85:659–667. https://doi.org/10.1038/ki.2013.349PMC4659420

    Article  PubMed  Google Scholar 

  36. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL et al (2017) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20. https://doi.org/10.1056/NEJMoa1611391PMC5322803

    Article  PubMed  Google Scholar 

  37. Kellum JA, Sileanu FE, Murugan R, Lucko N et al (2015) Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol 26:2231–2238. https://doi.org/10.1681/ASN.2014070724PMC4552117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaddourah A, Basu RK, Goldstein SL, Sutherland SM et al (2019) Oliguria and acute kidney injury in critically ill children: implications for diagnosis and outcomes. Pediatr Crit Care Med 20:332–339. https://doi.org/10.1097/PCC.0000000000001866

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Biostatistical and Data Management Core within the CRISMA (Clinical Research Investigation and Systems Modeling of Acute Illness) Center for their help in variable development as well as data acquisition, management, and storage.

Funding

This study was supported by the National Institutes of Health (T32 DK 91202 and UL1-TR-001857).

Author information

Authors and Affiliations

Authors

Contributions

Research idea and study design, CF, EJ, JCA, JK, and MM; data acquisition, CF, EJ, and JK; data analysis/interpretation, CF, EJ, JCA, JK, and MM; statistical analysis, CF and NS; and supervision or mentorship, JCA, JK, and MM. Each author contributed important intellectual content during manuscript drafting or revision, accepts personal accountability for the author’s own contributions, and agrees to ensure that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Cassandra L. Formeck.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Reprints

Reprints will not be ordered.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Graphical Abstract 5478 (PNG 114 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formeck, C.L., Siripong, N., Joyce, E.L. et al. Association of early hyponatremia and the development of acute kidney injury in critically ill children. Pediatr Nephrol 37, 2755–2763 (2022). https://doi.org/10.1007/s00467-022-05478-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-022-05478-5

Keywords

Navigation