Skip to main content

Advertisement

Log in

Early microvascular complications in type 1 and type 2 diabetes: recent developments and updates

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The prevalence of youth-onset diabetes is progressing rapidly worldwide, and poor glycemic control, in combination with prolonged diabetes duration and comorbidities including hypertension, has led to the early development of microvascular complications including diabetic kidney disease, retinopathy, and neuropathy. Pediatric populations with type 1 (T1D) and type 2 (T2D) diabetes are classically underdiagnosed with microvascular complications, and this leads to both undertreatment and insufficient attention to the mitigation of risk factors that could help attenuate further progression of complications and decrease the likelihood for long-term morbidity and mortality. This narrative review aims to present a comprehensive summary of the epidemiology, risk factors, symptoms, screening practices, and treatment options, including future opportunities for treatment advancement, for microvascular complications in youth with T1D and T2D. We seek to uniquely focus on the inherent challenges of managing pediatric populations with diabetes and discuss the similarities and differences between microvascular complications in T1D and T2D, while presenting a strong emphasis on the importance of early identification of at-risk youth. Further investigation of possible treatment mechanisms for microvascular complications in youth with T1D and T2D through dedicated pediatric outcome trials is necessary to target the brief window where early pathological vascular changes may be significantly attenuated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

  2. Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R Jr, Dolan L, Imperatore G, Linder B, Lawrence JM, Marcovina SM, Mottl AK, Black MH, Pop-Busui R, Saydah S, Hamman RF, Pihoker C (2017) Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 317:825–835. https://doi.org/10.1001/jama.2017.0686

  3. Donaghue KC, Marcovecchio ML, Wadwa RP, Chew EY, Wong TY, Calliari LE, Zabeen B, Salem MA, Craig ME (2018) ISPAD Clinical Practice Consensus Guidelines 2018: microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes 19(Suppl 27):262–274. https://doi.org/10.1111/pedi.12742

    Article  PubMed  PubMed Central  Google Scholar 

  4. Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M, International Diabetic Nephopathy Study Group (2005) The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54:2164–2171. https://doi.org/10.2337/diabetes.54.7.2164

  5. Daniels M, DuBose SN, Maahs DM, Beck RW, Fox LA, Gubitosi-Klug R, Laffel LM, Miller KM, Speer H, Tamborlane WV, Tansey MJ (2013) Factors associated with microalbuminuria in 7,549 children and adolescents with type 1 diabetes in the T1D Exchange clinic registry. Diabetes Care 36:2639–2645. https://doi.org/10.2337/dc12-2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Groop PH, Thomas MC, Moran JL, Wadèn J, Thorn LM, Mäkinen VP, Rosengård-Bärlund M, Saraheimo M, Hietala K, Heikkilä O, Forsblom C, FinnDiane Study Group (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58:1651–1658. https://doi.org/10.2337/db08-1543

  7. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, de Boer IH (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24:302–308. https://doi.org/10.1681/ASN.2012070718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amin R, Widmer B, Prevost AT, Schwarze P, Cooper J, Edge J, Marcovecchio L, Neil A, Dalton RN, Dunger DB (2008) Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study. BMJ 336(7646):697–701. https://doi.org/10.1136/bmj.39478.378241.BE

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maahs DM, Snively BM, Bell RA, Dolan L, Hirsch I, Imperatore G, Linder B, Marcovina SM, Mayer-Davis EJ, Pettitt DJ, Rodriguez BL, Dabelea D (2007) Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for Diabetes in Youth study. Diabetes Care 30:2593–2598. https://doi.org/10.2337/dc07-0450

    Article  PubMed  Google Scholar 

  10. TODAY Study Group (2013) Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care 36:1735–1741. https://doi.org/10.2337/dc12-2420

    Article  CAS  PubMed Central  Google Scholar 

  11. Pambianco G, Costacou T, Ellis D, Becker DJ, Klein R, Orchard TJ (2006) The 30-year natural history of type 1 diabetes complications: the Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes 55:1463–1469. https://doi.org/10.2337/db05-1423

    Article  CAS  PubMed  Google Scholar 

  12. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR; UKPDS GROUP (2003) Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63:225–232. https://doi.org/10.1046/j.1523-1755.2003.00712.x

  13. Ettinger LM, Freeman K, DiMartino-Nardi JR, Flynn JT (2005) Microalbuminuria and abnormal ambulatory blood pressure in adolescents with type 2 diabetes mellitus. J Pediatr 147:67–73. https://doi.org/10.1016/j.jpeds.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  14. Farah SE, Wals KT, Friedman IB, Pisacano MA, DiMartino-Nardi J (2006) Prevalence of retinopathy and microalbuminuria in pediatric type 2 diabetes mellitus. J Pediatr Endocrinol Metab 19(7):937–942. https://doi.org/10.1515/jpem.2006.19.7.937

    Article  PubMed  Google Scholar 

  15. Dart AB, Sellers EA, Martens PJ, Rigatto C, Brownell MD, Dean HJ (2012) High burden of kidney disease in youth-onset type 2 diabetes. Diabetes Care 35:1265–1271. https://doi.org/10.2337/dc11-2312

    Article  PubMed  PubMed Central  Google Scholar 

  16. Afkarian M (2015) Diabetic kidney disease in children and adolescents. Pediatr Nephrol 30:65–74; quiz 70-71. https://doi.org/10.1007/s00467-014-2796-5

    Article  PubMed  Google Scholar 

  17. Ekinci EI, Jerums G, Skene A, Crammer P, Power D, Cheong KY, Panagiotopoulos S, McNeil K, Baker ST, Fioretto P, Macisaac RJ (2013) Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care 36:3620–3626. https://doi.org/10.2337/dc12-2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drummond KN, Kramer MS, Suissa S, Lévy-Marchal C, Dell’Aniello S, Sinaiko A, Mauer M, International Diabetic Nephropathy Study Group (2003) Effects of duration and age at onset of type 1 diabetes on preclinical manifestations of nephropathy. Diabetes 52:1818–1824. https://doi.org/10.2337/diabetes.52.7.1818

  19. Rapaport R, Sills IN (1994) Implications of the DCCT for children and adolescents with IDDM. N J Med 91:227–228

    CAS  PubMed  Google Scholar 

  20. (1994) Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. J Pediatr 125(2):177-188. https://doi.org/10.1016/s0022-3476(94)70190-3

  21. DCCT/EDIC research group (2014) Effect of intensive diabetes treatment on albuminuria in type 1 diabetes: long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study. Lancet Diabetes Endocrinol 2:793–800. https://doi.org/10.1016/S2213-8587(14)70155-X

    Article  Google Scholar 

  22. Amin R, Turner C, van Aken S, Bahu TK, Watts A, Lindsell DR, Dalton RN, Dunger DB (2005) The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: the Oxford Regional Prospective Study. Kidney Int 68:1740–1749. https://doi.org/10.1111/j.1523-1755.2005.00590.x

    Article  PubMed  Google Scholar 

  23. Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, Wright AD, Turner RC, Holman RR (2000) Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 321:412–419. https://doi.org/10.1136/bmj.321.7258.412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jenkins AJ, Lyons TJ, Zheng D, Otvos JD, Lackland DT, McGee D, Garvey WT, Klein RL, DCCT/EDIC Research Group (2003) Lipoproteins in the DCCT/EDIC cohort: associations with diabetic nephropathy. Kidney Int 64:817–828. https://doi.org/10.1046/j.1523-1755.2003.00164.x

  25. Stone ML, Craig ME, Chan AK, Lee JW, Verge CF, Donaghue KC (2006) Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care 29:2072–2077. https://doi.org/10.2337/dc06-0239

    Article  CAS  PubMed  Google Scholar 

  26. Rossing P, Hougaard P, Parving HH (2002) Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care 25:859–864. https://doi.org/10.2337/diacare.25.5.859

    Article  PubMed  Google Scholar 

  27. Krolewski AS, Canessa M, Warram JH, Laffel LM, Christlieb AR, Knowler WC, Rand LI (1988) Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 318:140–145. https://doi.org/10.1056/NEJM198801213180303

    Article  CAS  PubMed  Google Scholar 

  28. Saran R, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J, Balkrishnan R, Dietrich X, Eckard A, Eggers PW, Gaipov A, Gillen D, Gipson D, Hailpern SM, Hall YN, Han Y, He K, Herman W, Heung M, Hirth RA, Hutton D, Jacobsen SJ, Jin Y, Kalantar-Zadeh K, Kapke A, Kovesdy CP, Lavallee D, Leslie J, McCullough K, Modi Z, Molnar MZ, Montez-Rath M, Moradi H, Morgenstern H, Mukhopadhyay P, Nallamothu B, Nguyen DV, Norris KC, O’Hare AM, Obi Y, Park C, Pearson J, Pisoni R, Potukuchi PK, Rao P, Repeck K, Rhee CM, Schrager J, Schaubel DE, Selewski DT, Shaw SF, Shi JM, Shieu M, Sim JJ, Soohoo M, Steffick D, Streja E, Sumida K, Tamura MK, Tilea A, Tong L, Wang D, Wang M, Woodside KJ, Xin X, Yin M, You AS, Zhou H, Shahinian V (2018) US Renal Data System 2017 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 71:A7. https://doi.org/10.1053/j.ajkd.2018.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  29. American Diabetes Association (2020) 13. Children and adolescents: standards of medical care in diabetes-2020. Diabetes Care 43(Suppl 1):S163–S182. https://doi.org/10.2337/dc20-S013

    Article  Google Scholar 

  30. American Diabetes Association (2020) 11. Microvascular complications and foot care. Diabetes Care 43(Suppl 1):S135–S151. https://doi.org/10.2337/dc20-S011

  31. Zeitler P, Arslanian S, Fu J, Pinhas-Hamiel O, Reinehr T, Tandon N, Urakami T, Wong J, Maahs DM (2018) ISPAD clinical practice consensus guidelines 2018: type 2 diabetes mellitus in youth. Pediatr Diabetes 19(Suppl 27):28–46. https://doi.org/10.1111/pedi.12719

    Article  PubMed  Google Scholar 

  32. Dodge WF, West EF, Smith EH, Bruce Harvey 3rd (1976) Proteinuria and hematuria in schoolchildren: epidemiology and early natural history. J Pediatr 88:327-347. https://doi.org/10.1016/s0022-3476(76)81012-8

  33. Caramori ML, Fioretto P, Mauer M (2003) Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 52:1036–1040

    Article  CAS  PubMed  Google Scholar 

  34. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G (2004) Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 27:195–200

    Article  PubMed  Google Scholar 

  35. Fadrowski JJ, Neu AM, Schwartz GJ, Furth SL (2011) Pediatric GFR estimating equations applied to adolescents in the general population. Clin J Am Soc Nephrol 6:1427–1435. https://doi.org/10.2215/CJN.06460710

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, Melsom T, Lamb EJ, Rule AD, Turner ST, Glassock RJ, De Souza V, Selistre L, Mariat C, Martens F, Delanaye P (2016) An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 31:798–806. https://doi.org/10.1093/ndt/gfv454

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group (2020) KDIGO 2020 Clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 98:S1–S115. https://doi.org/10.1016/j.kint.2020.06.019

    Article  Google Scholar 

  38. Bjornstad P, Anderson PL, Maahs DM (2016) Measuring glomerular filtration rate by iohexol clearance on filter paper is feasible in adolescents with type 1 diabetes in the ambulatory setting. Acta Diabetol 53:331–333. https://doi.org/10.1007/s00592-015-0764-6

    Article  PubMed  Google Scholar 

  39. Rizk DV, Meier D, Sandoval RM, Chacana T, Reilly ES, Seegmiller JC, DeNoia E, Strickland JS, Muldoon J, Molitoris BA (2018) A novel method for rapid bedside measurement of GFR. J Am Soc Nephrol 29:1609–1613. https://doi.org/10.1681/ASN.2018020160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, Willi SM, Laffel L, Arslanian S, Nadeau KJ; TODAY Study Group (2018) Insulin sensitivity and diabetic kidney disease in children and adolescents with type 2 diabetes: an observational analysis of data from the TODAY clinical trial. Am J Kidney Dis 71:65–74. https://doi.org/10.1053/j.ajkd.2017.07.015

  41. Jiang G, Luk AOY, Tam CHT, Xie F, Carstensen B, Lau ESH, Lim CKP, Lee HM, Ng ACW, Ng MCY, Ozaki R, Kong APS, Chow CC, Yang X, Lan HY, Tsui SKW, Fan X, Szeto CC, So WY, Chan JCN, Ma RCW; Hong Kong Diabetes Register TRS Study Group (2019) Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney Int 95:178–187. https://doi.org/10.1016/j.kint.2018.08.026

  42. Bjornstad P, Cherney DZ, Snell-Bergeon JK, Pyle L, Rewers M, Johnson RJ, Maahs DM (2015) Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with Type 1 diabetes. Nephrol Dial Transplant 30:1706–1711. https://doi.org/10.1093/ndt/gfv121

    Article  PubMed  PubMed Central  Google Scholar 

  43. Caramori ML (2017) Should all patients with diabetes have a kidney biopsy? Nephrol Dial Transplant 32:3–5. https://doi.org/10.1093/ndt/gfw389

    Article  PubMed  Google Scholar 

  44. Bermejo S, García-Carro C, Soler MJ (2019) Diabetes and renal disease-should we biopsy? Nephrol Dial Transplant 28:gfz248. https://doi.org/10.1093/ndt/gfz248

  45. KDOQI (2007) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 49(2 Suppl 2):S12–S154. https://doi.org/10.1053/j.ajkd.2006.12.005

  46. Fioretto P, Bruseghin M, Berto I, Gallina P, Manzato E, Mussap M (2006) Renal protection in diabetes: role of glycemic control. J Am Soc Nephrol 17(4 Suppl 2):S86–S89. https://doi.org/10.1681/ASN.2005121343

    Article  PubMed  Google Scholar 

  47. Wright LA, Hirsch IB (2017) Metrics beyond hemoglobin A1C in diabetes management: time in range, hypoglycemia, and other parameters. Diabetes Technol Ther 19(S2):S16–S26. https://doi.org/10.1089/dia.2017.0029

    Article  CAS  PubMed  Google Scholar 

  48. Forlenza GP, Ekhlaspour L, Breton M, Maahs DM, Wadwa RP, DeBoer M, Messer LH, Town M, Pinnata J, Kruse G, Buckingham BA, Cherñavvsky D (2019) Successful at-home use of the tandem Control-IQ artificial pancreas system in young children during a randomized controlled trial. Diabetes Technol Ther 21:159–169. https://doi.org/10.1089/dia.2019.0011

    Article  PubMed  PubMed Central  Google Scholar 

  49. Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, Brazg RL, Ilany J, Slover RH, Anderson SM, Bergenstal RM, Grosman B, Roy A, Cordero TL, Shin J, Lee SW, Kaufman FR (2017) Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther 19:155–163. https://doi.org/10.1089/dia.2016.0421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosenstock J, Bajaj HS, Janež A, Silver R, Begtrup K, Hansen MV, Jia T, Goldenberg R; NN1436-4383 Investigators (2020) Once-weekly insulin for type 2 diabetes without previous insulin treatment. N Engl J Med 383:2107–2116. https://doi.org/10.1056/NEJMoa2022474

  51. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329:1456–1462. https://doi.org/10.1056/NEJM199311113292004

    Article  CAS  PubMed  Google Scholar 

  52. Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V, Rubis N, Gherardi G, Arnoldi F, Ganeva M, Ene-Iordache B, Gaspari F, Perna A, Bossi A, Trevisan R, Dodesini AR, Remuzzi G; Bergamo Nephrologic Diabetes Complications Trial (BENEDICT) Investigators (2004) Preventing microalbuminuria in type 2 diabetes. N Engl J Med 351:1941–1951. https://doi.org/10.1056/NEJMoa042167

  53. Viberti G, Wheeldon NM, MicroAlbuminuria Reduction With VALsartan (MARVAL) Study Investigators (2002) Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 106:672–678. https://doi.org/10.1161/01.cir.0000024416.33113.0a

  54. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK, Gidding SS, Goodwin C, Leu MG, Powers ME, Rea C, Samuels J, Simasek M, Thaker VV, Urbina EM, SUBCOMMITTEE ON SCREENING AND MANAGEMENT OF HIGH BLOOD PRESSURE IN CHILDREN (2017) Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140:3. https://doi.org/10.1542/peds.2017-1904

  55. Doshi SM, Friedman AN (2017) Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol 12:1366–1373. https://doi.org/10.2215/CJN.11111016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. (2011) Chapter 6: Blood pressure management in children with CKD ND (2012). Kidney Int Suppl 2:372–376. https://doi.org/10.1038/kisup.2012.56

  57. Mann JFE, Orsted DD, Buse JB (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377:2197–2198. https://doi.org/10.1056/NEJMc1713042

    Article  PubMed  Google Scholar 

  58. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW, CREDENCE Trial Investigators (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380:2295–2306. https://doi.org/10.1056/NEJMoa1811744

    Article  CAS  PubMed  Google Scholar 

  59. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239. https://doi.org/10.1056/NEJMra1005073

    Article  CAS  PubMed  Google Scholar 

  60. Massin P, Erginay A, Mercat-Caudal I, Vol S, Robert N, Reach G, Cahane M, Tichet J (2007) Prevalence of diabetic retinopathy in children and adolescents with type-1 diabetes attending summer camps in France. Diabetes Metab 33:284–289. https://doi.org/10.1016/j.diabet.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  61. Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, Silink M, Donaghue KC (2006) Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 29:1300–1306. https://doi.org/10.2337/dc05-2470

    Article  PubMed  Google Scholar 

  62. Mayer-Davis EJ, Davis C, Saadine J, D’Agostino RB, Jr., Dabelea D, Dolan L, Garg S, Lawrence JM, Pihoker C, Rodriguez BL, Klein BE, Klein R, SEARCH for Diabetes in Youth Study Group (2012) Diabetic retinopathy in the SEARCH for Diabetes in Youth Cohort: a pilot study. Diabet Med 29:1148-1152. https://doi.org/10.1111/j.1464-5491.2012.03591.x

  63. Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R Jr, Dolan L, Imperatore G, Linder B, Lawrence JM, Marcovina SM, Mottl AK, Black MH, Pop-Busui R, Saydah S, Hamman RF, Pihoker C, SEARCH for Diabetes in Youth Study Group (2017) Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 317(8):825–835. https://doi.org/10.1001/jama.2017.0686

  64. Ciulla TA, Amador AG, Zinman B (2003) Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care 26:2653–2664. https://doi.org/10.2337/diacare.26.9.2653

    Article  PubMed  Google Scholar 

  65. (1991) Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98 (5 Suppl):823-833. https://pubmed.ncbi.nlm.nih.gov/2062515/

  66. Johannesen SK, Viken JN, Vergmann AS, Grauslund J (2019) Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review. Acta Ophthalmol 97:7–14. https://doi.org/10.1111/aos.13859

    Article  PubMed  Google Scholar 

  67. Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS, Zhou Q, Ko T, Rosen RB (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35:2353–2363. https://doi.org/10.1097/IAE.0000000000000862

    Article  PubMed  Google Scholar 

  68. Harrison WW, Bearse MA Jr, Schneck ME, Wolff BE, Jewell NP, Barez S, Mick AB, Dolan BJ, Adams AJ (2011) Prediction, by retinal location, of the onset of diabetic edema in patients with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 52:6825–6831. https://doi.org/10.1167/iovs.11-7533

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hietala K, Harjutsalo V, Forsblom C, Summanen P, Groop PH, FinnDiane Study Group (2010) Age at onset and the risk of proliferative retinopathy in type 1 diabetes. Diabetes Care 33:1315–1319. https://doi.org/10.2337/dc09-2278

  70. Benitez-Aguirre P, Craig ME, Cass HG, Sugden CJ, Jenkins AJ, Wang JJ, Cusumano J, Hodgson LA, Lee K, Wong TY, Donaghue KC (2014) Sex differences in retinal microvasculature through puberty in type 1 diabetes: are girls at greater risk of diabetic microvascular complications? Invest Ophthalmol Vis Sci 56:571–577. https://doi.org/10.1167/iovs.14-15147

    Article  PubMed  Google Scholar 

  71. Benitez-Aguirre PZ, Wong TY, Craig ME, Davis EA, Cotterill A, Couper JJ, Cameron FJ, Mahmud FH, Jones TW, Hodgson LAB, Dalton RN, Dunger DB, Donaghue KC, Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT) (2018) The Adolescent Cardio-Renal Intervention Trial (AdDIT): retinal vascular geometry and renal function in adolescents with type 1 diabetes. Diabetologia 61:968–976. https://doi.org/10.1007/s00125-017-4538-2

  72. Marcovecchio ML, Chiesa ST, Bond S, Daneman D, Dawson S, Donaghue KC, Jones TW, Mahmud FH, Marshall SM, Neil HAW, Dalton RN, Deanfield J, Dunger DB, AdDIT Study Group (2017) ACE inhibitors and statins in adolescents with type 1 diabetes. N Engl J Med 377:1733–1745. https://doi.org/10.1056/NEJMoa1703518

  73. TODAY Study Group, Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, Arslanian S, Cuttler L, Nathan DM, Tollefsen S, Wilfley D, Kaufman F (2012) A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med 366:2247–2256. https://doi.org/10.1056/NEJMoa1109333

  74. Bjornstad P, Schäfer M, Truong U, Cree-Green M, Pyle L, Baumgartner A, Garcia Reyes Y, Maniatis A, Nayak S, Wadwa RP, Browne LP, Reusch JEB, Nadeau KJ (2018) Metformin improves insulin sensitivity and vascular health in youth with type 1 diabetes mellitus. Circulation 138:2895–2907. https://doi.org/10.1161/CIRCULATIONAHA.118.035525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tamborlane WV, Barrientos-Pérez M, Fainberg U, Frimer-Larsen H, Hafez M, Hale PM, Jalaludin MY, Kovarenko M, Libman I, Lynch JL, Rao P, Shehadeh N, Turan S, Weghuber D, Barrett T, Ellipse Trial Investigators (2019) Liraglutide in children and adolescents with type 2 diabetes. N Engl J Med 381:637–646. https://doi.org/10.1056/NEJMoa1903822

    Article  CAS  PubMed  Google Scholar 

  76. Bjornstad P, Laffel L, Tamborlane WV, Simons G, Hantel S, von Eynatten M, George J, Marquard J, Cherney DZI (2018) Acute effect of empagliflozin on fractional excretion of sodium and eGFR in youth with type 2 diabetes. Diabetes Care 41:e129–e130. https://doi.org/10.2337/dc18-0394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nehus EJ, Khoury JC, Inge TH, Xiao N, Jenkins TM, Moxey-Mims MM, Mitsnefes MM (2017) Kidney outcomes three years after bariatric surgery in severely obese adolescents. Kidney Int 91:451–458. https://doi.org/10.1016/j.kint.2016.09.031

    Article  PubMed  Google Scholar 

  78. Bjornstad P, Hughan K, Kelsey MM, Shah AS, Lynch J, Nehus E, Mitsnefes M, Jenkins T, Xu P, Xie C, Inge T, Nadeau K (2020) Effect of surgical versus medical therapy on diabetic kidney disease over 5 years in severely obese adolescents with type 2 diabetes. Diabetes Care 43:187–195. https://doi.org/10.2337/dc19-0708

    Article  PubMed  Google Scholar 

  79. Heier JS, Korobelnik JF, Brown DM, Schmidt-Erfurth U, Do DV, Midena E, Boyer DS, Terasaki H, Kaiser PK, Marcus DM, Nguyen QD, Jaffe GJ, Slakter JS, Simader C, Soo Y, Schmelter T, Vitti R, Berliner AJ, Zeitz O, Metzig C, Holz FG (2016) Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology 123:2376–2385. https://doi.org/10.1016/j.ophtha.2016.07.032

    Article  PubMed  Google Scholar 

  80. Silva PS, Cavallerano JD, Haddad NM, Kwak H, Dyer KH, Omar AF, Shikari H, Aiello LM, Sun JK, Aiello LP (2015) Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology 122:949–956

    Article  PubMed  Google Scholar 

  81. Inzucchi SE, Wanner C, Hehnke U, Zwiener I, Kaspers S, Clark D, George JT, Zinman B (2019) Retinopathy outcomes with empagliflozin versus placebo in the EMPA-REG OUTCOME trial. Diabetes Care 42:e53–e55. https://doi.org/10.2337/dc18-1355

    Article  PubMed  Google Scholar 

  82. Gorman DM, le Roux CW, Docherty NG (2016) The effect of bariatric surgery on diabetic retinopathy: good, bad, or both? Diabetes Metab J 40:354–364. https://doi.org/10.4093/dmj.2016.40.5.354

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jaiswal M, Divers J, Dabelea D, Isom S, Bell RA, Martin CL, Pettitt DJ, Saydah S, Pihoker C, Standiford DA, Dolan LM, Marcovina S, Linder B, Liese AD, Pop-Busui R, Feldman EL (2017) Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes: SEARCH for Diabetes in Youth Study. Diabetes Care 40:1226–1232. https://doi.org/10.2337/dc17-0179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mah JK, Pacaud D (2014) Diabetic neuropathy in children. Handb Clin Neurol 126:123–143. https://doi.org/10.1016/b978-0-444-53480-4.00010-2

    Article  PubMed  Google Scholar 

  85. Hajas G, Kissova V, Tirpakova A (2016) A 10-yr follow-up study for the detection of peripheral neuropathy in young patients with type 1 diabetes. Pediatr Diabetes 17:632–641. https://doi.org/10.1111/pedi.12382

    Article  CAS  PubMed  Google Scholar 

  86. Jaiswal M, Lauer A, Martin CL, Bell RA, Divers J, Dabelea D, Pettitt DJ, Saydah S, Pihoker C, Standiford DA, Rodriguez BL, Pop-Busui R, Feldman EL (2013) Peripheral neuropathy in adolescents and young adults with type 1 and type 2 diabetes from the SEARCH for Diabetes in Youth follow-up cohort: a pilot study. Diabetes Care 36:3903–3908. https://doi.org/10.2337/dc13-1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang M, Donaghue KC, Cho YH, Craig ME (2013) Autonomic neuropathy in young people with type 1 diabetes: a systematic review. Pediatr Diabetes 14:239–248. https://doi.org/10.1111/pedi.12039

    Article  PubMed  Google Scholar 

  88. Jaiswal M, Divers J, Urbina EM, Dabelea D, Bell RA, Pettitt DJ, Imperatore G, Pihoker C, Dolan LM, Liese AD, Marcovina S, Linder B, Feldman EL, Pop-Busui R (2018) Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: The SEARCH for Diabetes in Youth Cohort Study. Pediatr Diabetes 19:680–689. https://doi.org/10.1111/pedi.12633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maser RE, Mitchell BD, Vinik AI, Freeman R (2003) The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 26:1895–1901. https://doi.org/10.2337/diacare.26.6.1895

    Article  PubMed  Google Scholar 

  90. Jende JME, Groener JB, Oikonomou D, Heiland S, Kopf S, Pham M, Nawroth P, Bendszus M, Kurz FT (2018) Diabetic neuropathy differs between type 1 and type 2 diabetes: Insights from magnetic resonance neurography. Ann Neurol 83:588–598. https://doi.org/10.1002/ana.25182

    Article  CAS  PubMed  Google Scholar 

  91. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D (2017) Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care 40:136. https://doi.org/10.2337/dc16-2042

    Article  CAS  PubMed  Google Scholar 

  92. Hirschfeld G, von Glischinski M, Blankenburg M, Zernikow B (2014) Screening for peripheral neuropathies in children with diabetes: a systematic review. Pediatrics 133:e1324–e1330. https://doi.org/10.1542/peds.2013-3645

    Article  PubMed  Google Scholar 

  93. Hirschfeld G, von Glischinski M, Knop C, Wiesel T, Reinehr T, Aksu F, Blankenburg M, Hirsch J, Zernikow B (2015) Difficulties in screening for peripheral neuropathies in children with diabetes. Diabet Med 32:786–789. https://doi.org/10.1111/dme.12684

    Article  CAS  PubMed  Google Scholar 

  94. Andersen ST, Witte DR, Andersen H, Bjerg L, Bruun NH, Jørgensen ME, Finnerup NB, Lauritzen T, Jensen TS, Tankisi H, Charles M (2018) Risk-factor trajectories preceding diabetic polyneuropathy: ADDITION-Denmark. Diabetes Care 41:1955–1962. https://doi.org/10.2337/dc18-0392

    Article  CAS  PubMed  Google Scholar 

  95. Hanewinckel R, Drenthen J, Ligthart S, Dehghan A, Franco OH, Hofman A, Ikram MA, van Doorn PA (2016) Metabolic syndrome is related to polyneuropathy and impaired peripheral nerve function: a prospective population-based cohort study. J Neurol Neurosurg Psychiatry 87:1336–1342. https://doi.org/10.1136/jnnp-2016-314171

    Article  PubMed  Google Scholar 

  96. Andersen ST, Witte DR, Dalsgaard EM, Andersen H, Nawroth P, Fleming T, Jensen TM, Finnerup NB, Jensen TS, Lauritzen T, Feldman EL, Callaghan BC, Charles M (2018) Risk factors for incident diabetic polyneuropathy in a cohort with screen-detected type 2 diabetes followed for 13 years: ADDITION-Denmark. Diabetes Care 41:1068–1075. https://doi.org/10.2337/dc17-2062

    Article  CAS  PubMed  Google Scholar 

  97. Cho YH, Craig ME, Donaghue KC (2014) Puberty as an accelerator for diabetes complications. Pediatr Diabetes 15:18–26. https://doi.org/10.1111/pedi.12112

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

KLT receives salary and research support from the NIDDK (5T32DK007135-46), ISPAD-JDRF Research Fellowship, Center for Women’s Health Research at the University of Colorado, and the Department of Pediatrics, Section of Endocrinology at the University of Colorado School of Medicine. ALBS receives salary and research support from NIDDK (K01DK120562) and the Lifecourse Epidemiology of Adiposity and Diabetes Center at the University of Colorado, Departments of Epidemiology and Pediatrics. PB receives salary and research support from NIDDK (DK116720, DK114886), JDRF (2-SRA-2019-845-S-B, 3-SRA-2017-424-M-B), American Heart Association (20IPA35260142), Boettcher Foundation, Center for Women’s Health Research at University of Colorado, the Department of Pediatrics, Section of Endocrinology and Barbara Davis Center for Diabetes at the University of Colorado School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Bjornstad.

Ethics declarations

Conflict of interests

KLT, ALBS, and EJN have nothing to disclose. PB has acted as a consultant for AstraZeneca, Bayer, Bristol-Myers Squibb, Boehringer Ingelheim, Eli-Lilly, Sanofi, Novo Nordisk and Horizon Pharma. PB serves on the advisory boards for AstraZeneca, Bayer, Boehringer Ingelheim, Novo Nordisk and XORTX.

Additional information

Multiple Choice Question Answers

1. b; 2. b; 3. d; 4. c; 5. a

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kalie L. Tommerdahl and Allison L.B. Shapiro are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tommerdahl, K.L., Shapiro, A.L.B., Nehus, E.J. et al. Early microvascular complications in type 1 and type 2 diabetes: recent developments and updates. Pediatr Nephrol 37, 79–93 (2022). https://doi.org/10.1007/s00467-021-05050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-05050-7

Keywords

Navigation