Skip to main content

Advertisement

Log in

Deficiency of CFHR plasma proteins and autoantibody positive hemolytic uremic syndrome: treatment rationale, outcomes, and monitoring

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Deficiency of Complement Factor H Related (CFHR) plasma proteins and Autoantibody Positive Hemolytic Uremic Syndrome (DEAP-HUS) is a subtype of atypical hemolytic uremic syndrome, known to be associated with significant morbidity. Its pathogenesis is linked to the production of IgG autoantibodies against complement factor H, a regulator of the alternative complement pathway. The binding of the autoantibodies to the C terminal of complement factor H interferes with its regulatory function, leading to increased activation of the alternative complement pathway and consequent endothelial cellular damage. Early diagnosis and initiation of appropriate therapy is reported to lead to favorable outcomes. Institution of plasma exchange therapy within 24 h of diagnosis has been shown to rapidly lower antibody levels, leading to clinical improvement. Adjunctive immunosuppression therapy suppresses antibody production and helps in maintaining long-term clinical remission of the disease. Available data advocates a treatment regimen that combines plasma therapy (preferably plasma exchange) and immunosuppression to halt disease process and sustain long-term disease remission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Noris M, Remuzzi G (2009) Thrombotic microangiopathy: what not to learn from a meta-analysis. Nat Rev Nephrol 5:186–188. https://doi.org/10.1038/nrneph.2009.28

    Article  PubMed  Google Scholar 

  2. Noris M, Remuzzi G (2009) Atypical hemolytic-uremic syndrome. N Engl J Med 361:1676–1687. https://doi.org/10.1056/NEJMra0902814

    Article  CAS  Google Scholar 

  3. Brocklebank V, Johnson S, Sheerin TP, Marks SD, Gilbert RD, Tyerman K, Kinoshita M, Awan A, Kaur A, Webb N, Hegde S, Finlay E, Fitzpatrick M, Walsh PR, Wong EKS, Booth C, Kerecuk L, Salama AD, Almond M, Inward C, Goodship TH, Sheerin NS, Marchbank KJ, Kavanagh D (2017) Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland. Kidney Int 92(5):1261–1271. https://doi.org/10.1016/j.kint.2017.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sinha A, Gulati A, Saini S, Blanc C, Gupta A, Gurjar BS, Saini H, Kotresh ST, Ali U, Bhatia D, Ohri A, Kumar M, Agarwal I, Gulati S, Anand K, Vijayakumar M, Sinha R, Sethi S, Salmona M, George A, Bal V, Singh G, Dinda AK, Hari P, Rath S, Dragon-Durey MA, Bagga A, Indian HUS Registry (2014) Prompt plasma exchanges and immunosuppressive treatment improves the outcomes of anti-factor H autoantibody-associated hemolytic uremic syndrome in children. Kidney Int 85:1151–1160. https://doi.org/10.1038/ki.2013.373

    Article  CAS  PubMed  Google Scholar 

  5. Caprioli J, Noris M, Brioschi S, Pianetti G, Castelletti F, Bettinaglio P, Mele C, Bresin E, Cassis L, Gamba S, Porrati F, Bucchioni S, Monteferrante G, Fang CJ, Liszewski MK, Kavanagh D, Atkinson JP, Remuzzi G, International Registry of Recurrent and Familial HUS/TTP (2006) Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108:1267–1279. https://doi.org/10.1182/blood-2005-10-007252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frémeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, Moghal N, Kaplan BS, Weiss RA, Lhotta K, Kapur G, Mattoo T, Nivet H, Wong W, Gie S, Hurault de Ligny B, Fischbach M, Gupta R, Hauhart R, Meunier V, Loirat C, Dragon-Durey MA, Fridman WH, Janssen BJ, Goodship TH, Atkinson JP (2008) Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112:4948–4952. https://doi.org/10.1182/blood-2008-01-133702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loirat C, Noris M, Fremeaux-Bacchi V (2008) Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol 23:1957–1972. https://doi.org/10.1007/s00467-008-0872-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Geerdink LM, Westra D, van Wijk JA, Dorresteijn EM, Lilien MR, Davin JC, Kömhoff M, Van Hoeck K, van der Vlugt A, van den Heuvel LP, van de Kar NC (2012) Atypical hemolytic uremic syndrome in children: complement mutations and clinical characteristics. Pediatr Nephrol 27:1283–1291. https://doi.org/10.1007/s00467-012-2131-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, Del-Favero J, Plaisance S, Claes B, Lambrechts D, Zoja C, Remuzzi G, Conway EM (2009) Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med 361:345–357. https://doi.org/10.1056/NEJMoa0810739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strobel S, Hoyer PF, Mache CJ, Sulyok E, Liu WS, Richter H, Oppermann M, Zipfel PF, Józsi M (2010) Functional analyses indicate a pathogenic role of factor H autoantibodies in atypical haemolytic uraemic syndrome. Nephrol Dial Transplant 25:136–144. https://doi.org/10.1093/ndt/gfp388

    Article  CAS  PubMed  Google Scholar 

  11. Puraswani M, Khandelwal P, Saini H, Saini S, Gurjar BS, Sinha A, Shende RP, Maiti TK, Singh AK, Kanga U, Ali U, Agarwal I, Anand K, Prasad N, Rajendran P, Sinha R, Vasudevan A, Saxena A, Agarwal S, Hari P, Sahu A, Rath S, Bagga A (2019) Clinical and immunological profile of anti-factor H antibody associated atypical hemolytic uremic syndrome: a nationwide database. Front Immunol 10:1282. https://doi.org/10.3389/fimmu.2019.01282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cserhalmi M, Papp A, Brandus B, Uzonyi B, Józsi M (2019) Regulation of regulators: role of the complement factor H-related proteins. Semin Immunol 45:101341. https://doi.org/10.1016/j.smim.2019.101341

    Article  CAS  PubMed  Google Scholar 

  13. Zipfel PF (2009) Complement and immune defense: from innate immunity to human diseases. Immunol Lett 126:1–7. https://doi.org/10.1016/j.imlet.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  14. Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT (2013) Complement factor H related proteins (CFHRs). Mol Immunol 56:170–180. https://doi.org/10.1016/j.molimm.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  15. Skerka C, Hellwage J, Weber W, Tilkorn A, Buck F, Marti T, Kampen E, Beisiegel U, Zipfel PF (1997) The human factor H-related protein 4 (FHR-4). A novel short consensus repeat-containing protein is associated with human triglyceride-rich lipoproteins. J Biol Chem 272:5627–5634. https://doi.org/10.1074/jbc.272.9.5627

    Article  CAS  PubMed  Google Scholar 

  16. Skerka C, Horstmann RD, Zipfel PF (1991) Molecular cloning of a human serum protein structurally related to complement factor H. J Biol Chem 266:12015–12020

    Article  CAS  Google Scholar 

  17. Skerka C, Kühn S, Günther K, Lingelbach K, Zipfel PF (1993) A novel short consensus repeat-containing molecule is related to human complement factor H. J Biol Chem 268:2904–2908

    Article  CAS  Google Scholar 

  18. Skerka C, Zipfel PF (2008) Complement factor H related proteins in immune diseases. Vaccine 26(Suppl 8):I9–I14. https://doi.org/10.1016/j.vaccine.2008.11.021

    Article  CAS  PubMed  Google Scholar 

  19. Abarrategui-Garrido C, Martínez-Barricarte R, López-Trascasa M, de Córdoba SR, Sánchez-Corral P (2009) Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood 114:4261–4271. https://doi.org/10.1182/blood-2009-05-223834

    Article  CAS  PubMed  Google Scholar 

  20. Dragon-Durey MA, Blanc C, Garnier A, Hofer J, Sethi SK, Zimmerhackl LB (2010) Anti-factor H autoantibody-associated hemolytic uremic syndrome: review of literature of the autoimmune form of HUS. Semin Thromb Hemost 36:633–640. https://doi.org/10.1055/s-0030-1262885

    Article  CAS  PubMed  Google Scholar 

  21. Buhlmann D, Eberhardt HU, Medyukhina A, Prodinger WM, Figge MT, Zipfel PF, Skerka C (2016) FHR3 blocks C3d-mediated coactivation of human B cells. J Immunol 197:620–629. https://doi.org/10.4049/jimmunol.1600053

    Article  CAS  PubMed  Google Scholar 

  22. Skerka C, Zipfel PF, Müller D, Micklisch S, Riedl M, Zimmerhackl LB, Hofer J (2010) The autoimmune disease DEAP-hemolytic uremic syndrome. Semin Thromb Hemost 36:625–632. https://doi.org/10.1055/s-0030-1262884

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz J, Winters JL, Padmanabhan A, Balogun RA, Delaney M, Linenberger ML, Szczepiorkowski ZM, Williams ME, Wu Y, Shaz BH (2013) Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apher 28:145–284. https://doi.org/10.1002/jca.21276

    Article  PubMed  Google Scholar 

  24. Khandelwal P, Gupta A, Sinha A, Saini S, Hari P, Dragon Durey MA, Bagga A (2015) Effect of plasma exchange and immunosuppressive medications on antibody titers and outcome in anti-complement factor H antibody-associated hemolytic uremic syndrome. Pediatr Nephrol 30:451–457. https://doi.org/10.1007/s00467-014-2948-7

    Article  PubMed  Google Scholar 

  25. Boyer O, Balzamo E, Charbit M, Biebuyck-Gougé N, Salomon R, Dragon-Durey MA, Frémeaux-Bacchi V, Niaudet P (2010) Pulse cyclophosphamide therapy and clinical remission in atypical hemolytic uremic syndrome with anti-complement factor H autoantibodies. Am J Kidney Dis 55:923–927. https://doi.org/10.1053/j.ajkd.2009.12.026

    Article  PubMed  Google Scholar 

  26. Kim JJ, McCulloch M, Marks SD, Waters A, Noone D (2015) The clinical spectrum of hemolytic uremic syndrome secondary to complement factor H autoantibodies. Clin Nephrol 83:49–56. https://doi.org/10.5414/CN107777

    Article  CAS  PubMed  Google Scholar 

  27. Nozal P, Bernabéu-Herrero ME, Uzonyi B, Szilágyi Á, Hyvärinen S, Prohászka Z, Jokiranta TS, Sánchez-Corral P, López-Trascasa M, Józsi M (2016) Heterogeneity but individual constancy of epitopes, isotypes and avidity of factor H autoantibodies in atypical hemolytic uremic syndrome. Mol Immunol 70:47–55. https://doi.org/10.1016/j.molimm.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  28. Hackl A, Ehren R, Kirschfink M, Zipfel PF, Beck BB, Weber LT, Habbig S (2017) Successful discontinuation of eculizumab under immunosuppressive therapy in DEAP-HUS. Pediatr Nephrol 32:1081–1087. https://doi.org/10.1007/s00467-017-3612-9

    Article  PubMed  Google Scholar 

  29. Salinas-Carmona MC, Perez LI, Galan K, Vazquez AV (2009) Immunosuppressive drugs have different effect on B lymphocyte subsets and IgM antibody production in immunized BALB/c mice. Autoimmunity 42:537–544. https://doi.org/10.1080/08916930903019119

    Article  CAS  PubMed  Google Scholar 

  30. Moore I, Strain L, Pappworth I, Kavanagh D, Barlow PN, Herbert AP, Schmidt CQ, Staniforth SJ, Holmes LV, Ward R, Morgan L, Goodship TH, Marchbank KJ (2010) Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood 115:379–387. https://doi.org/10.1182/blood-2009-05-221549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwon T, Dragon-Durey MA, Macher MA, Baudouin V, Maisin A, Peuchmaur M, Fremeaux-Bacchi V, Loirat C (2008) Successful pre-transplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. Nephrol Dial Transplant 23:2088–2090. https://doi.org/10.1093/ndt/gfn063

    Article  PubMed  Google Scholar 

  32. Durey MA, Sinha A, Togarsimalemath SK, Bagga A (2016) Anti-complement-factor H-associated glomerulopathies. Nat Rev Nephrol 12:563–578. https://doi.org/10.1038/nrneph.2016.99

    Article  CAS  PubMed  Google Scholar 

  33. Sana G, Dragon-Durey MA, Charbit M, Bouchireb K, Rousset-Rouvière C, Bérard E, Salomon R, Frémeaux-Bacchi V, Niaudet P, Boyer O (2014) Long-term remission of atypical HUS with anti-factor H antibodies after cyclophosphamide pulses. Pediatr Nephrol 29:75–83. https://doi.org/10.1007/s00467-013-2558-9

    Article  PubMed  Google Scholar 

  34. Loirat C, Fakhouri F, Ariceta G, Besbas N, Bitzan M, Bjerre A, Coppo R, Emma F, Johnson S, Karpman D, Landau D, Langman CB, Lapeyraque AL, Licht C, Nester C, Pecoraro C, Riedl M, van de Kar NC, Van de Walle J, Vivarelli M, Frémeaux-Bacchi V, HUS International (2016) An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol 31:15–39. https://doi.org/10.1007/s00467-015-3076-8

    Article  PubMed  Google Scholar 

  35. Morgan BP (2016) The membrane attack complex as an inflammatory trigger. Immunobiology 221:747–751. https://doi.org/10.1016/j.imbio.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  36. Brachet G, Bourquard T, Gallay N, Reiter E, Gouilleux-Gruart V, Poupon A, Watier H (2016) Eculizumab epitope on complement C5: progress towards a better understanding of the mechanism of action. Mol Immunol 77:126–131. https://doi.org/10.1016/j.molimm.2016.07.016

    Article  CAS  PubMed  Google Scholar 

  37. Wijnsma KL, Ter Heine R, Moes DJAR, Langemeijer S, Schols SEM, Volokhina EB, van den Heuvel LP, Wetzels JFM, van de Kar NCAJ, Brüggemann RJ (2019) Pharmacology, pharmacokinetics and pharmacodynamics of eculizumab, and possibilities for an individualized approach to eculizumab. Clin Pharmacokinet 58:859–874. https://doi.org/10.1007/s40262-019-00742-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Licht C, Greenbaum LA, Muus P, Babu S, Bedrosian CL, Cohen DJ, Delmas Y, Douglas K, Furman RR, Gaber OA, Goodship T, Herthelius M, Hourmant M, Legendre CM, Remuzzi G, Sheerin N, Trivelli A, Loirat C (2015) Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int 87:1061–1073. https://doi.org/10.1038/ki.2014.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rondeau E, Cataland SR, Al-Dakkak I, Miller B, Webb NJA, Landau D (2019) Eculizumab safety: five-year experience from the Global Atypical Hemolytic Uremic Syndrome Registry. Kidney Int Rep 4:1568–1576. https://doi.org/10.1016/j.ekir.2019.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  40. Crew PE, McNamara L, Waldron PE, McCulley L, Christopher Jones S, Bersoff-Matcha SJ (2020) Antibiotic prophylaxis in vaccinated eculizumab recipients who developed meningococcal disease. J Inf Secur 80:350–371. https://doi.org/10.1016/j.jinf.2019.11.015

    Article  CAS  Google Scholar 

  41. McNamara LA, Topaz N, Wang X, Hariri S, Fox L, MacNeil JR (2017) High risk for invasive meningococcal disease among patients receiving eculizumab (Soliris) despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep 66(27):734–737. https://doi.org/10.15585/mmwr.mm6627e1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Noone D, Waters A, Pluthero FG, Geary DF, Kirschfink M, Zipfel PF, Licht C (2014) Successful treatment of DEAP-HUS with eculizumab. Pediatr Nephrol 29:841–851. https://doi.org/10.1007/s00467-013-2654-x

    Article  PubMed  Google Scholar 

  43. Diamante Chiodini B, Davin JC, Corazza F, Khaldi K, Dahan K, Ismaili K, Adams B (2014) Eculizumab in anti-factor h antibodies associated with atypical hemolytic uremic syndrome. Pediatrics 133:e1764–e1768. https://doi.org/10.1542/peds.2013-1594

    Article  PubMed  Google Scholar 

  44. Dedhia P, Govil A, Mogilishetty G, Alloway RR, Woodle ES, Abu Jawdeh BG (2017) Eculizumab and belatacept for de novo atypical hemolytic uremic syndrome associated with CFHR3-CFHR1 deletion in a kidney transplant recipient: a case report. Transplant Proc 49:188–192. https://doi.org/10.1016/j.transproceed.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  45. Top O, Parsons J, Bohlender LL, Michelfelder S, Kopp P, Busch-Steenberg C, Hoernstein SNW, Zipfel PF, Häffner K, Reski R, Decker EL (2019) Recombinant production of MFHR1, a novel synthetic multitarget complement inhibitor, in moss bioreactors. Front Plant Sci 10:260. https://doi.org/10.3389/fpls.2019.00260

    Article  PubMed  PubMed Central  Google Scholar 

  46. Michelfelder S, Fischer F, Wäldin A, Hörle KV, Pohl M, Parsons J, Reski R, Decker EL, Zipfel PF, Skerka C, Häffner K (2018) The MFHR1 fusion protein is a novel synthetic multitarget complement inhibitor with therapeutic potential. J Am Soc Nephrol 29:1141–1153. https://doi.org/10.1681/ASN.2017070738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prohászka Z, Nilsson B, Frazer-Abel A, Kirschfink M (2016) Complement analysis 2016: clinical indications, laboratory diagnostics and quality control. Immunobiology 221:1247–1258. https://doi.org/10.1016/j.imbio.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  48. Kerboua KE, Djenouhat K (2020) Semi-solid phase assay for the alternative complement pathway activity assessment (AP100). J Immunoassay Immunochem 41:144–151. https://doi.org/10.1080/15321819.2019.1696819

    Article  CAS  PubMed  Google Scholar 

  49. Jaskowski TD, Martins TB, Litwin CM, Hill HR (1999) Comparison of three different methods for measuring classical pathway complement activity. Clin Diagn Lab Immunol 6:137–139

    Article  CAS  Google Scholar 

  50. Puissant-Lubrano B, Puissochet S, Congy-Jolivet N, Chauveau D, Decramer S, Garnier A, Huart A, Kamar N, Ribes D, Blancher A (2017) Alternative complement pathway hemolytic assays reveal incomplete complement blockade in patients treated with eculizumab. Clin Immunol 183:1–7. https://doi.org/10.1016/j.clim.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  51. Costabile M (2010) Measuring the 50% haemolytic complement (CH50) activity of serum. J Vis Exp 37:1923. https://doi.org/10.3791/1923

    Article  CAS  Google Scholar 

  52. Kirschfink M, Mollnes TE (2003) Modern complement analysis. Clin Diagn Lab Immunol 10:982–989. https://doi.org/10.1128/cdli.10.6.982-989.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shih AR, Murali MR (2015) Laboratory tests for disorders of complement and complement regulatory proteins. Am J Hematol 90:1180–1186. https://doi.org/10.1002/ajh.24209

    Article  PubMed  Google Scholar 

  54. Lee BH, Kwak SH, Shin JI, Lee SH, Choi HJ, Kang HG, Ha IS, Lee JS, Dragon-Durey MA, Choi Y, Cheong HI (2009) Atypical hemolytic uremic syndrome associated with complement factor H autoantibodies and CFHR1/CFHR3 deficiency. Pediatr Res 66:336–340. https://doi.org/10.1203/PDR.0b013e3181b1bd4a

    Article  CAS  PubMed  Google Scholar 

  55. Alexion. Highlights of prescribing information (2019) https://alexion.com/Documents/Soliris_USPI.pdf. Accessed 4/2/20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Iorember.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iorember, F., Nayak, A. Deficiency of CFHR plasma proteins and autoantibody positive hemolytic uremic syndrome: treatment rationale, outcomes, and monitoring. Pediatr Nephrol 36, 1365–1375 (2021). https://doi.org/10.1007/s00467-020-04652-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04652-x

Keywords

Navigation