Skip to main content

Advertisement

Log in

Endothelin-targeted new treatments for proteinuric and inflammatory glomerular diseases: focus on the added value to anti-renin-angiotensin system inhibition

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is the main cause of end-stage renal disease worldwide arising as a frequent complication of diabetes, obesity, and hypertension. Current therapeutic options, mainly based of inhibition of the renin-angiotensin system (RAS), provide imperfect renoprotection if started at an advanced phase of the disease, and treatments that show or even reverse the progression of CKD are needed. The endothelin (ET) system contributes to the normal renal physiology; however, robust evidence suggests a key role of ET-1 and its cognate receptors, in the progression of CKD. The effectiveness of ET receptor antagonists in ameliorating renal hemodynamics and fibrosis has been largely demonstrated in different experimental models. A significant antiproteinuric effect of ET receptor antagonists has been found in diabetic and non-diabetic CKD patients even on top of RAS blockade, and emerging evidence from ongoing clinical trials highlights their beneficial effects on a wide range of kidney disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yanagisawa M, Kurihara H, Kimura S et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    CAS  PubMed  Google Scholar 

  2. Kohan DE, Barton M (2014) Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int 86:896–904

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Neuhofer W, Pittrow D (2009) Endothelin receptor selectivity in chronic kidney disease: rationale and review of recent evidence. Eur J Clin Investig 39(Suppl 2):50–67

    CAS  Google Scholar 

  4. Barton M, Yanagisawa M (2008) Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol 86:485–498

    CAS  PubMed  Google Scholar 

  5. Ruggenenti P, Perna A, Remuzzi G, Gruppo Italiano di Studi Epidemiologici in Nefrologia (2001) ACE inhibitors to prevent end-stage renal disease: when to start and why possibly never to stop: a post hoc analysis of the REIN trial results. Ramipril Efficacy in Nephropathy. J Am Soc Nephrol 12:2832–2837

    CAS  PubMed  Google Scholar 

  6. Inoue A, Yanagisawa M, Kimura S et al (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A 86:2863–2867

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Longaretti L, Benigni A (2009) Endothelin receptor selectivity in chronic renal failure. Eur J Clin Investig 39(Suppl 2):32–37

    CAS  Google Scholar 

  8. Kuc R, Davenport AP (2004) Comparison of endothelin-A and endothelin-B receptor distribution visualized by radioligand binding versus immunocytochemical localization using subtype selective antisera. J Cardiovasc Pharmacol 44(Suppl 1):S224–S226

    CAS  PubMed  Google Scholar 

  9. Wendel M, Knels L, Kummer W, Koch T (2006) Distribution of endothelin receptor subtypes ETA and ETB in the rat kidney. J Histochem Cytochem 54:1193–1203

    CAS  PubMed  Google Scholar 

  10. Kohan DE, Pritchett Y, Molitch M et al (2011) Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J Am Soc Nephrol 22:763–772

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cybulsky AV, Stewart DJ, Cybulsky MI (1993) Glomerular epithelial cells produce endothelin-1. J Am Soc Nephrol 3:1398–1404

    CAS  PubMed  Google Scholar 

  12. Sorokin A, Kohan DE (2003) Physiology and pathology of endothelin-1 in renal mesangium. Am J Physiol Ren Physiol 285:F579–F589

    CAS  Google Scholar 

  13. Kohan DE (2009) Biology of endothelin receptors in the collecting duct. Kidney Int 76:481–486

    CAS  PubMed  Google Scholar 

  14. Ahn D, Ge Y, Stricklett PK et al (2004) Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Invest 114:504–511

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gariepy CE, Ohuchi T, Williams SC et al (2000) Salt-sensitive hypertension in endothelin-B receptor-deficient rats. J Clin Invest 105:925–933

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ge Y, Huang Y, Kohan DE (2008) Role of the renin-angiotensin-aldosterone system in collecting duct-derived endothelin-1 regulation of blood pressure. Can J Physiol Pharmacol 86:329–336

    CAS  PubMed  Google Scholar 

  17. Ge Y, Bagnall A, Stricklett PK et al (2006) Collecting duct-specific knockout of the endothelin B receptor causes hypertension and sodium retention. Am J Physiol Ren Physiol 291:F1274–F1280

    CAS  Google Scholar 

  18. Kohan DE, Rossi NF, Inscho EW, Pollock DM (2011) Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 91:1–77

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ge Y, Stricklett PK, Hughes AK et al (2005) Collecting duct-specific knockout of the endothelin A receptor alters renal vasopressin responsiveness, but not sodium excretion or blood pressure. Am J Physiol Ren Physiol 289:F692–F698

    CAS  Google Scholar 

  20. Ge Y, Bagnall A, Stricklett PK et al (2008) Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention. Am J Physiol Ren Physiol 295:F1635–F1640

    CAS  Google Scholar 

  21. Bugaj V, Pochynyuk O, Mironova E et al (2008) Regulation of the epithelial Na+ channel by endothelin-1 in rat collecting duct. Am J Physiol Ren Physiol 295:F1063–F1070

    CAS  Google Scholar 

  22. Stricklett PK, Hughes AK, Kohan DE (2006) Endothelin-1 stimulates NO production and inhibits cAMP accumulation in rat inner medullary collecting duct through independent pathways. Am J Physiol Ren Physiol 290:F1315–F1319

    CAS  Google Scholar 

  23. Sullivan JC, Goodchild TT, Cai Z et al (2007) Endothelin(A) (ET(A)) and ET(B) receptor-mediated regulation of nitric oxide synthase 1 (NOS1) and NOS3 isoforms in the renal inner medulla. Acta Physiol (Oxford) 191:329–336

    CAS  Google Scholar 

  24. Benigni A, Cassis P, Remuzzi G (2010) Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2:247–257

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolf G, Haberstroh U, Neilson EG (1992) Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol 140:95–107

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohno M, Horio T, Ikeda M et al (1992) Angiotensin II stimulates endothelin-1 secretion in cultured rat mesangial cells. Kidney Int 42:860–866

    CAS  PubMed  Google Scholar 

  27. Barton M, Shaw S, d’Uscio LV et al (1997) Angiotensin II increases vascular and renal endothelin-1 and functional endothelin converting enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem Biophys Res Commun 238:861–865

    CAS  PubMed  Google Scholar 

  28. Moreau P, d’Uscio LV, Shaw S et al (1997) Angiotensin II increases tissue endothelin and induces vascular hypertrophy: reversal by ET(A)-receptor antagonist. Circulation 96:1593–1597

    CAS  PubMed  Google Scholar 

  29. Wenzel RR, Rüthemann J, Bruck H et al (2001) Endothelin-A receptor antagonist inhibits angiotensin II and noradrenaline in man. Br J Clin Pharmacol 52:151–157

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rossi GP, Ganzaroli C, Cesari M et al (2003) Endothelin receptor blockade lowers plasma aldosterone levels via different mechanisms in primary aldosteronism and high-to-normal renin hypertension. Cardiovasc Res 57:277–283

    CAS  PubMed  Google Scholar 

  31. Benigni A, Perico N, Gaspari F et al (1991) Increased renal endothelin production in rats with reduced renal mass. Am J Phys 260:F331–F339

    CAS  Google Scholar 

  32. Bruzzi I, Corna D, Zoja C et al (1997) Time course and localization of endothelin-1 gene expression in a model of renal disease progression. Am J Pathol 151:1241–1247

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zoja C, Benigni A, Camozzi D et al (2003) Combining lisinopril and l-arginine slows disease progression and reduces endothelin-1 in passive Heymann nephritis. Kidney Int 64:857–863

    CAS  PubMed  Google Scholar 

  34. Nakamura T, Ebihara I, Fukui M et al (1993) Renal expression of mRNAs for endothelin-1, endothelin-3 and endothelin receptors in NZB/W F1 mice. Ren Physiol Biochem 16:233–243

    CAS  PubMed  Google Scholar 

  35. Benigni A, Colosio V, Brena C et al (1998) Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes 47:450–456

    CAS  PubMed  Google Scholar 

  36. Benigni A, Zoja C, Corna D et al (1993) A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney Int 44:440–444

    CAS  PubMed  Google Scholar 

  37. Barton M (2010) Therapeutic potential of endothelin receptor antagonists for chronic proteinuric renal disease in humans. Biochim Biophys Acta 1802:1203–1213

    CAS  PubMed  Google Scholar 

  38. Vaněčková I, Hojná S, Kadlecová M et al (2018) Renoprotective effects of ET(A) receptor antagonists therapy in experimental non-diabetic chronic kidney disease: is there still hope for the future? Physiol Res 67:S55–S67

    PubMed  Google Scholar 

  39. Morigi M, Buelli S, Angioletti S et al (2005) In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. Am J Pathol 166:1309–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Collino F, Bussolati B, Gerbaudo E et al (2008) Preeclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. Am J Physiol Ren Physiol 294:F1185–F1194

    CAS  Google Scholar 

  41. Saleh MA, Boesen EI, Pollock JS et al (2010) Endothelin-1 increases glomerular permeability and inflammation independent of blood pressure in the rat. Hypertension 56:942–949

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Buelli S, Rosanò L, Gagliardini E et al (2014) β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J Am Soc Nephrol 25:523–533

    CAS  PubMed  Google Scholar 

  43. Morigi M, Buelli S, Zanchi C et al (2006) Shigatoxin-induced endothelin-1 expression in cultured podocytes autocrinally mediates actin remodeling. Am J Pathol 169:1965–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Soroka S, Alam A, Bevilacqua M et al (2017) Assessing risk of disease progression and pharmacological management of autosomal dominant polycystic kidney disease: a Canadian expert consensus. Can J Kidney Health Dis 4:2054358117695784

    PubMed  PubMed Central  Google Scholar 

  45. Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76:149–168

    PubMed  PubMed Central  Google Scholar 

  46. Reiterová J, Merta M, Stekrová J et al (2007) The influence of endothelin-A receptor gene polymorphism on the progression of autosomal dominant polycystic kidney disease and IgA nephropathy. Folia Biol (Praha) 53:134–137

    Google Scholar 

  47. Reiterová J, Merta M, Stekrová J et al (2006) Influence of endothelin-1 gene polymorphisms on the progression of autosomal dominant polycystic kidney disease. Kidney Blood Press Res 29:182–188

    PubMed  Google Scholar 

  48. Ong AC, Jowett TP, Firth JD et al (1995) An endothelin-1 mediated autocrine growth loop involved in human renal tubular regeneration. Kidney Int 48:390–401

    CAS  PubMed  Google Scholar 

  49. Ong AC, Jowett TP, Firth JD et al (1994) Human tubular-derived endothelin in the paracrine regulation of renal interstitial fibroblast function. Exp Nephrol 2:134

    CAS  PubMed  Google Scholar 

  50. Munemura C, Uemasu J, Kawasaki H (1994) Epidermal growth factor and endothelin in cyst fluid from autosomal dominant polycystic kidney disease cases: possible evidence of heterogeneity in cystogenesis. Am J Kidney Dis 24:561–568

    CAS  PubMed  Google Scholar 

  51. Chang M-Y, Parker E, El Nahas M et al (2007) Endothelin B receptor blockade accelerates disease progression in a murine model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:560–569

    CAS  PubMed  Google Scholar 

  52. Hocher B, Thöne-Reineke C, Rohmeiss P et al (1997) Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest 99:1380–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hocher B, Kalk P, Slowinski T et al (2003) ETA receptor blockade induces tubular cell proliferation and cyst growth in rats with polycystic kidney disease. J Am Soc Nephrol 14:367–376

    CAS  PubMed  Google Scholar 

  54. Daina E, Cravedi P, Alpa M et al (2015) A multidrug, antiproteinuric approach to alport syndrome: a ten-year cohort study. Nephron 130:13–20

  55. Savige J (2014) Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol Lond 592:4013–4023

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Abrahamson DR (2016) Steps on the Alport path to proteinuria. Kidney Int 90:242–244

    CAS  PubMed  Google Scholar 

  57. Dufek B, Meehan DT, Delimont D et al (2016) Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease. Kidney Int 90:300–310

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nath KA, Hebbel RP (2015) Sickle cell disease: renal manifestations and mechanisms. Nat Rev Nephrol 11:161–171

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chaar V, Tarer V, Etienne-Julan M et al (2006) ET-1 and ecNOS gene polymorphisms and susceptibility to acute chest syndrome and painful vaso-occlusive crises in children with sickle cell anemia. Haematologica 91:1277–1278

    CAS  PubMed  Google Scholar 

  60. Sabaa N, de Franceschi L, Bonnin P et al (2008) Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. J Clin Invest 118:1924–1933

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kasztan M, Fox BM, Speed JS et al (2017) Long-term endothelin-A receptor antagonism provides robust renal protection in humanized sickle cell disease mice. J Am Soc Nephrol 28:2443–2458

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Taylor C, Kasztan M, Tao B et al (2019) Combined hydroxyurea and ETA receptor blockade reduces renal injury in the humanized sickle cell mouse. Acta Physiol (Oxford) 225:e13178

    Google Scholar 

  63. Cravedi P, Kopp JB, Remuzzi G (2013) Recent progress in the pathophysiology and treatment of FSGS recurrence. Am J Transplant 13:266–274

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen HC, Guh JY, Chang JM et al (2001) Plasma and urinary endothelin-1 in focal segmental glomerulosclerosis. J Clin Lab Anal 15:59–63

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lattmann T, Shaw S, Münter K et al (2005) Anatomically distinct activation of endothelin-3 and the L-arginine/nitric oxide pathway in the kidney with advanced aging. Biochem Biophys Res Commun 327:234–241

    CAS  PubMed  Google Scholar 

  66. Campbell KN, Tumlin JA (2018) Protecting podocytes: a key target for therapy of focal segmental glomerulosclerosis. Am J Nephrol 47(Suppl 1):14–29

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ortmann J, Amann K, Brandes RP et al (2004) Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition. Hypertension 44:974–981

    CAS  PubMed  Google Scholar 

  68. Daehn I, Casalena G, Zhang T et al (2014) Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J Clin Invest 124:1608–1621

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ebefors K, Wiener RJ, Yu L et al (2019) Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int 96:957–970

  70. Schieppati A, Remuzzi G (2008) Novel therapies of lupus nephritis. Curr Opin Nephrol Hypertens 17:156–161

    CAS  PubMed  Google Scholar 

  71. Yoshio T, Masuyama J, Mimori A et al (1995) Endothelin-1 release from cultured endothelial cells induced by sera from patients with systemic lupus erythematosus. Ann Rheum Dis 54:361–365

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dhaun N, Lilitkarntakul P, Macintyre IM et al (2009) Urinary endothelin-1 in chronic kidney disease and as a marker of disease activity in lupus nephritis. Am J Physiol Ren Physiol 296:F1477–F1483

    CAS  Google Scholar 

  73. Herman WH, Emancipator SN, Rhoten RL, Simonson MS (1998) Vascular and glomerular expression of endothelin-1 in normal human kidney. Am J Phys 275:F8–F17

  74. Simonson MS, Wann S, Mené P et al (1989) Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest 83:708–712

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nakamura T, Ebihara I, Tomino Y, Koide H (1995) Effect of a specific endothelin A receptor antagonist on murine lupus nephritis. Kidney Int 47:481–489

    CAS  PubMed  Google Scholar 

  76. Tycová I, Hrubá P, Maixnerová D et al (2018) Molecular profiling in IgA nephropathy and focal and segmental glomerulosclerosis. Physiol Res 67:93–105

    PubMed  Google Scholar 

  77. Maixnerová D, Merta M, Reiterová J et al (2007) The influence of three endothelin-1 polymorphisms on the progression of IgA nephropathy. Folia Biol (Praha) 53:27–32

    Google Scholar 

  78. Lehrke I, Waldherr R, Ritz E, Wagner J (2001) Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. J Am Soc Nephrol 12:2321–2329

    CAS  PubMed  Google Scholar 

  79. Chen HC, Guh JY, Chang JM, Lai YH (2001) Differential effects of FMLP-activated neutrophils from patients with IgA nephropathy enhanced endothelin 1 production of glomerular mesangial cells. Nephron 89:274–279

    CAS  PubMed  Google Scholar 

  80. Nakamura T, Ebihara I, Fukui M et al (1996) Effect of a specific endothelin receptor A antagonist on glomerulonephritis of ddY mice with IgA nephropathy. Nephron 72:454–460

    CAS  PubMed  Google Scholar 

  81. Remuzzi G, Schieppati A, Ruggenenti P (2002) Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 346:1145–1151

    PubMed  Google Scholar 

  82. Benigni A, Corna D, Maffi R et al (1998) Renoprotective effect of contemporary blocking of angiotensin II and endothelin-1 in rats with membranous nephropathy. Kidney Int 54:353–359

    CAS  PubMed  Google Scholar 

  83. Čertíková Chábová V, Vernerová Z, Kujal P et al (2014) Addition of ET(A) receptor blockade increases renoprotection provided by renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic rats. Life Sci 118:297–305

    PubMed  Google Scholar 

  84. Amann K, Simonaviciene A, Medwedewa T et al (2001) Blood pressure-independent additive effects of pharmacologic blockade of the renin-angiotensin and endothelin systems on progression in a low-renin model of renal damage. J Am Soc Nephrol 12:2572–2584

    CAS  PubMed  Google Scholar 

  85. Sedláková L, Čertíková Chábová V, Doleželová Š et al (2017) Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Hypertens 39:183–195

    PubMed  Google Scholar 

  86. Zoja C, Zanchi C, Benigni A (2015) Key pathways in renal disease progression of experimental diabetes. Nephrol Dial Transplant 30(Suppl 4):iv54–iv59

    CAS  PubMed  Google Scholar 

  87. Hocher B, Schwarz A, Reinbacher D et al (2001) Effects of endothelin receptor antagonists on the progression of diabetic nephropathy. Nephron 87:161–169

    CAS  PubMed  Google Scholar 

  88. Cosenzi A, Bernobich E, Trevisan R et al (2003) Nephroprotective effect of bosentan in diabetic rats. J Cardiovasc Pharmacol 42:752–756

    CAS  PubMed  Google Scholar 

  89. Xu M, Dai D-Z, Dai Y (2009) Normalizing NADPH oxidase contributes to attenuating diabetic nephropathy by the dual endothelin receptor antagonist CPU0213 in rats. Am J Nephrol 29:252–256

    CAS  PubMed  Google Scholar 

  90. Idris-Khodja N, Ouerd S, Mian MOR et al (2016) Endothelin-1 overexpression exaggerates diabetes-induced endothelial dysfunction by altering oxidative stress. Am J Hypertens 29:1245–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Watson AMD, Li J, Schumacher C et al (2010) The endothelin receptor antagonist avosentan ameliorates nephropathy and atherosclerosis in diabetic apolipoprotein E knockout mice. Diabetologia 53:192–203

  92. Sasser JM, Sullivan JC, Hobbs JL et al (2007) Endothelin A receptor blockade reduces diabetic renal injury via an anti-inflammatory mechanism. J Am Soc Nephrol 18:143–154

    CAS  PubMed  Google Scholar 

  93. Spires D, Poudel B, Shields CA et al (2018) Prevention of the progression of renal injury in diabetic rodent models with preexisting renal disease with chronic endothelin A receptor blockade. Am J Physiol Ren Physiol 315:F977–F985

    CAS  Google Scholar 

  94. Gagliardini E, Corna D, Zoja C et al (2009) Unlike each drug alone, lisinopril if combined with avosentan promotes regression of renal lesions in experimental diabetes. Am J Physiol Ren Physiol 297:F1448–F1456

    CAS  Google Scholar 

  95. Lenoir O, Milon M, Virsolvy A et al (2014) Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J Am Soc Nephrol 25:1050–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang H, Feng Z, Xie J et al (2018) Podocyte-specific knockin of PTEN protects kidney from hyperglycemia. Am J Physiol Ren Physiol 314:F1096–F1107

    CAS  Google Scholar 

  97. Zoja C, Cattaneo S, Fiordaliso F et al (2011) Distinct cardiac and renal effects of ETA receptor antagonist and ACE inhibitor in experimental type 2 diabetes. Am J Physiol Ren Physiol 301:F1114–F1123

    CAS  Google Scholar 

  98. Gross M-L, El-Shakmak A, Szábó A et al (2003) ACE-inhibitors but not endothelin receptor blockers prevent podocyte loss in early diabetic nephropathy. Diabetologia 46:856–868

    CAS  PubMed  Google Scholar 

  99. Weber MA, Black H, Bakris G et al (2009) A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet 374:1423–1431

    CAS  PubMed  Google Scholar 

  100. Bakris GL, Lindholm LH, Black HR et al (2010) Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial. Hypertension 56:824–830

    CAS  PubMed  Google Scholar 

  101. Idorsia: Drug discovery and clinical development. https://www.idorsia.com/documents/com/fact-sheets-presentations/fs-clinical-development.pdf, 2019

  102. Medicine, UNLo:ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03541174, 2019

  103. Sidharta PN, Melchior M, Kankam MK, Dingemanse J (2019) Single- and multiple-dose tolerability, safety, pharmacokinetics, and pharmacodynamics of the dual endothelin receptor antagonist aprocitentan in healthy adult and elderly subjects. Drug Des Dev Ther 13:949–964

    CAS  Google Scholar 

  104. Wenzel RR, Littke T, Kuranoff S et al (2009) Avosentan reduces albumin excretion in diabetics with macroalbuminuria. J Am Soc Nephrol 20:655–664

    PubMed  PubMed Central  Google Scholar 

  105. Smolander J, Vogt B, Maillard M et al (2009) Dose-dependent acute and sustained renal effects of the endothelin receptor antagonist avosentan in healthy subjects. Clin Pharmacol Ther 85:628–634

    CAS  PubMed  Google Scholar 

  106. Mann JFE, Green D, Jamerson K et al (2010) Avosentan for overt diabetic nephropathy. J Am Soc Nephrol 21:527–535

    CAS  PubMed  PubMed Central  Google Scholar 

  107. de Zeeuw D, Coll B, Andress D et al (2014) The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J Am Soc Nephrol 25:1083–1093. https://doi.org/10.1681/ASN.2013080830

    Article  PubMed  PubMed Central  Google Scholar 

  108. Heerspink HJL, Parving H-H, Andress DL et al (2019) Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393:1937–1947

    CAS  PubMed  Google Scholar 

  109. Perkovic V, Jardine MJ, Neal B et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380:2295–2306

    CAS  PubMed  Google Scholar 

  110. Trachtman H, Nelson P, Adler S et al (2018) DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J Am Soc Nephrol 29:2745–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Medicine, UNLo: ClinicalTrials.gov. Study of sparsentan in patients with primary focal segmental glomerulosclerosis (FSGS) (DUPLEX). 2019. https://clinicaltrials.gov/ct2/show/NCT03493685. Accessed 28 Nov 2019

  112. Medicine, UNLo: ClinicalTrials.gov. A study of the effect and safety of sparsentan in the treatment of patients with IgA nephropathy (PROTECT). 2019. https://clinicaltrials.gov/ct2/show/NCT03762850. Accessed 28 Nov 2019

  113. Medicine, UNLo: ClinicalTrials.gov. The role of endthelin-1 in sickle cell disease. 2019. https://clinicaltrials.gov/ct2/show/NCT02712346. Accessed 28 Nov 2019

  114. Battistini B, Berthiaume N, Kelland NF et al (2006) Profile of past and current clinical trials involving endothelin receptor antagonists: the novel “-sentan” class of drug. Exp Biol Med 231:653–695

    CAS  Google Scholar 

  115. Hoekman J, Lambers Heerspink HJ, Viberti G et al (2014) Predictors of congestive heart failure after treatment with an endothelin receptor antagonist. Clin J Am Soc Nephrol 9:490–498

    PubMed  PubMed Central  Google Scholar 

  116. Kohan DE, Lambers Heerspink HJ, Coll B et al (2015) Predictors of atrasentan-associated fluid retention and change in albuminuria in patients with diabetic nephropathy. Clin J Am Soc Nephrol 10:1568–1574

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariela Benigni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benigni, A., Buelli, S. & Kohan, D.E. Endothelin-targeted new treatments for proteinuric and inflammatory glomerular diseases: focus on the added value to anti-renin-angiotensin system inhibition. Pediatr Nephrol 36, 763–775 (2021). https://doi.org/10.1007/s00467-020-04518-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04518-2

Keywords

Navigation