Skip to main content

Advertisement

Log in

Use of calcimimetics in children with normal kidney function

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The calcium-sensing receptor (CaSR) plays an important role in the homeostasis of serum ionized calcium by regulating parathyroid hormone (PTH) secretion and tubular calcium handling. Calcimimetics, which act by allosteric modulation of the CaSR, mimic hypercalcemia resulting in suppression of PTH release and increase in calciuria. Mostly used in children to treat secondary hyperparathyroidism associated with advanced renal failure, we have shown that calcimimetics can also be successfully used in children with bone and mineral disorders in which elevated PTH plays a detrimental role in skeletal pathophysiology in the face of normal kidney function. The current review briefly discusses the role of the CaSR and calcimimetics in calcium homeostasis, and then addresses the potential applications of calcimimetics in children with normal kidney function with disorders in which suppression of PTH is beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Portale AA, Perwad F (2016) Calcium and phosphorous. In: Avner E, Niaudet P, Emma F, Harmon WE, Yoshikawa N, Goldstein SL (eds) Pediatric nephrology, 7th edn. Springer, New York, pp 231–266

    Google Scholar 

  2. Gardella TJ, Juppner H, Brown EM, Kronenberg HM, Potts Jr JT (2010) Parathyroid hormone and parathyroid hormone-related peptide in the regulation of calcium homeostasis and bone development. In: DeGroot LJ, Jameson JL (eds) Endocrinology, 6th edn. W.B. Saunders, Philadelphia, pp 1040–1073

    Google Scholar 

  3. Hebert SC (1996) Extracellular calcium-sensing receptor: implications for calcium and magnesium handling in the kidney. Kidney Int 6:2129–2139

    Article  Google Scholar 

  4. Brown EM (1999) Physiology and pathophysiology of the extracellular calcium-sensing receptor. Am J Med 2:238–253

    Article  Google Scholar 

  5. Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H (2007) New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 5:503–515

    Article  Google Scholar 

  6. Daniela R, Brown EM (2010) Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Ren Physiol 298:485–499

    Article  Google Scholar 

  7. McKay CP, Portale A (2008) Emerging topics in pediatric. Bone and mineral disorders. Semin Nephrol 4:370–378

    Google Scholar 

  8. Hammerland LG, Garrett JE, Hung BC, Levinthal C, Nemeth EF (1998) Allosteric activation of the Ca2+ receptor expressed in Xenopus laevis oocytes by NPS 467 or NPS 568. Mol Pharmacol 53:1083–1088

    CAS  PubMed  Google Scholar 

  9. Riccardi D, Valenti G (2016) Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol 12:414–425

    Article  CAS  Google Scholar 

  10. Alfadda TI, Saleh AM, Houillier P, Geibel JP (2014) Calcium-sensing receptor 20 years later. Am J Physiol Cell Physiol 307:C221–C231

    Article  CAS  Google Scholar 

  11. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    Article  CAS  Google Scholar 

  12. Auron A, Alon US (2017) Hypercalcemia: a consultant’s approach. Pediatr Nephrol. https://doi.org/10.1007/s00467-017-3788-z

  13. Zhang L, Ji T, Wang Q, Meng K, Zhang R, Yang H, Liao C, Ma L, Jiao J (2017) Calcium-sensing receptor stimulation in cultured glomerular podocytes induces TRPC6-dependent calcium entry and RhoA activation. Cell Physiol Biochem 43:1777–1789

    Article  CAS  Google Scholar 

  14. Oh J, Beckmann J, Bloch J, Hettgen V, Mueller J, Li L, Hoemme M, Gross ML, Penzel R, Mundel P, Schaefer F, Schmitt CP (2011) Stimulation of the calcium-sensing receptor stabilizes the podocyte cytoskeleton, improves cell survival, and reduces toxin-induced glomerulosclerosis. Kidney Int 80:483–492

    Article  CAS  Google Scholar 

  15. Abdel-Magid AF (2015) Allosteric modulators: an emerging concept in drug discovery. ACS Med Chem Lett 6:104–107

    Article  Google Scholar 

  16. Wesseling-Perry KJ, Salusky IB (2013) Phosphate binders, vitamin D and calcimimetics in the management of chronic kidney disease-mineral bone disorders (CKD-MBD) in children. Pediatr Nephrol 28:617–625

    Article  Google Scholar 

  17. Goodman WG (2003) Calcimimetic agents and secondary hyperparathyroidism: rationale for use and results from clinical trials. Pediatr Nephrol 18:1206–1210

    Article  Google Scholar 

  18. Alharthi AA, Naglaa MK, Abukhatwah WM, Sherief LM (2015) Cinacalcet in pediatric and adolescent chronic kidney disease: a single-center experience. Medicine 94:e401

    Article  Google Scholar 

  19. Chonchol M, Locatelli F, Abboud HE, Charytan C, de Francisco ALM, Jolly S, Kaplan M, Roger SD, Sarkar S, Albizem MB, Mix TC, Kubo Y, Block GA (2009) A randomized, double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet HCl in participants with CKD not receiving dialysis. Am J Kidney Dis 53:197–207

  20. Pérez-Ricart A, Galicia-Basart M, Alcalde-Rodrigo M, Segarra-Medrano A, Suñé-Negre JM, Montoro-Ronsano JB (2016) Effectiveness of cinacalcet in patients with chronic kidney disease and secondary hyperparathyroidism not receiving dialysis. PLoS One 11(9):e0161527

    Article  Google Scholar 

  21. Wang W, Konk J, Nie M, Jiang Y, Me L (2017) Primary hyperparathyroidism in Chinese children and adolescents: a single-center experience at Peking Union Medical College Hospital. Clin Endocrinol 87:865–873

    Article  CAS  Google Scholar 

  22. Shoback DM, Bilezikian JP, Turner SA, McCary LC, Guo MD, Peacock M (2003) The calcimimetic cinacalcet normalizes serum calcium in subjects with primary hyperparathyroidism. J Clin Endocinol Metab 88:5644–5649

    Article  CAS  Google Scholar 

  23. Peacock M, Bilezikian JP, Klassen PS, Gou MD, Turner SA, Shoback D (2005) Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 90:135–141

    Article  CAS  Google Scholar 

  24. Mittendorf EA, McHenry CR (2005) Parathyroid carcinoma. J Surg Oncol 89:136–142

    Article  CAS  Google Scholar 

  25. Sloand JA, Shelly MA (2006) Normalization of lithium-induced hypercalcemia and hyperparathyroidism with cinacalcet hydrochloride. Am J Kidney Dis 48:832–837

    Article  Google Scholar 

  26. Pollak MR, Brown EM, Chou YH, Herbert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG (1993) Mutation in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75:1297–1303

    Article  CAS  Google Scholar 

  27. Festen-Spanjer B, Haring CM, Koster JB, Mudde AH (2007) Correction of hypercalcaemia by cinacalcet in familial hypocalciuric hypercalcaemia. Clin Endocrinol 68:324–325

    Google Scholar 

  28. Sethi BK, Nagesh VS, Kelwade J, Parekh H, Dukle V (2017) Utility of cinacalcet in familial hypocalciuric hypercalcemia. Indian J Endocrinol Metab 21:362–363

    Article  Google Scholar 

  29. Alon US, VanDeVoorde RG (2010) Beneficial effect of cinacalcet in a child with familial hypocalciuric hypercalcemia. Pediatr Nephrol 25:1747–1750

    Article  Google Scholar 

  30. Izzi B, Van Geet C, Freson K (2012) Recent advances in GNAS epigenetic research of pseudohypoparathyroidism. Curr Mol Med 12:566–573

    Article  CAS  Google Scholar 

  31. Farfel Z (1999) Pseudohypohyperparathyroidism-pseudohypoparathyroidism type Ib. J Bone Miner Res 14:1016

    Article  CAS  Google Scholar 

  32. Srivastava T, Krudys J, Mardis NJ, Sebestyen-VanSickle J, Alon US (2016) Cinacalcet as adjunctive therapy in pseudohypoparathyroidism type 1b. Pediatr Nephrol 31:795–800

    Article  Google Scholar 

  33. Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27:392–401

    Article  Google Scholar 

  34. Malloy PJ, Feldman D (2010) Genetic disorders and defects in vitamin D action. Endocrinol Metab Clin N Am 39:333–346

    Article  CAS  Google Scholar 

  35. Weisman Y, Bab I, Gazit D, Spirer Z, Jaffe M, Hochberg Z (1987) Long-term intracaval calcium infusion therapy in end-organ resistance to 1,25-dihydroxyvitamin D. Am J Med 83:984–990

    Article  CAS  Google Scholar 

  36. Srivastava T, Alon US (2013) Cinacalcet as adjunctive therapy for hereditary 1,25-dihydroxyvitamin D-resistant rickets. J Bone Miner Res 28:992–996

    Article  CAS  Google Scholar 

  37. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL (2011) A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Metab 26:1381–1388

    Article  Google Scholar 

  38. Penido M, Alon US (2014) Hypophosphatemic rickets due to perturbations in renal tubular function. Pediatr Nephrol 29:361–373

    Article  Google Scholar 

  39. Alon US (2011) Fibroblast growth factor (FGF)-23: a new hormone. European J Pediatr 170:545–554

  40. Rasmussen H, Pechet M, Anast C, Mazur A, Gertner J, Broadus AE (1981) Long-term treatment of familial hypophosphatemic rickets with oral phosphate and 1 α-hydroxyvitaminD3. J Peidatr 99:16–25

    Article  CAS  Google Scholar 

  41. Harrell RM, Lyles KW, Harrelson JM, Friedman NE, Drezner MK (1985) Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. J Clin Invest 75:1858–1868

    Article  CAS  Google Scholar 

  42. Raeder H, Shaw N, Netelenbos C, Bjerknes R (2008) A case of X-linked hypophosphatemic rickets: complications and the therapeutic use of cinacalcet. Euro J Endocrinol 159:S101–S105

    Article  CAS  Google Scholar 

  43. Yavropoulo MP, Kosta K, Gotzamani Psarrakou A, Papazisi A, Tranga T, Ventis S, Yovos JG (2010) Cinacalcet in hyperparathyroidism secondary to X-linked hypophosphatemic rickets: case report and brief literature review. Hormones 9:274–278

    Article  Google Scholar 

  44. Alon US, Levy-Olomucki L, Wayne V, Moore JS, Liu S, Quarles DL (2008) Calcimimetics as an adjuvant treatment for familial Hypophosphatemic rickets. Clin J Am Soc Nephro 3:658–664

    Article  CAS  Google Scholar 

  45. Alon US, Chan JCM (1984) Effects of PTH and 1,25 dihydroxyvitamin D3 on tubular handling of phosphate in hypophosphatemic rickets. J Clin Endocrinol Metab 58:671–675

    Article  CAS  Google Scholar 

  46. Alon US, Jarka D, Monachino PJ, Sebestyen VanSickle J, Srivastava T (2017) Cinacalcet as an alternative to phosphate therapy in X-linked hypophosphatemic rickets. Clin Endocrinol 87:114–116

    Article  Google Scholar 

  47. Hufnagle KG, Khan SN, Penn D, Cacciarelli A, Williams P (1982) Renal calcification: a complication of long-term furosemide in preterm infants. Pediatrics 70:360–363

    CAS  PubMed  Google Scholar 

  48. Saarela T, Lanning P, Koivisto M, Paavilainen T (1999) Nephrocalcinosis in full-term infants receiving furosemide treatment for congestive heart failure: a study of the incidence and 2-year follow up. Eur J Pediatr 158:668–672

    Article  CAS  Google Scholar 

  49. Venkataraman PS, Han BF, Tsang RC, Daugherty CC (1983) Secondary hyperparathyroidism and bone disease in infants receiving long-term furosemide therapy. Am J Dis Child 137:1157–1161

    CAS  PubMed  Google Scholar 

  50. Corapi K, McMahon GM, Wenger J, Seifter J, Bhan I (2015) Association of loop diuretic use with higher parathyroid hormone levels in patients with normal renal function. JAMA Intern Med 175:137–138

    Article  Google Scholar 

  51. Coe FL, Canterbury JM, Firpo JJ, Reiss E (1973) Evidence for secondary hyperparathyroidism in idiopathic hypercalciuria. J Clin Invest:134–142

  52. Fujita T, Delea CS, Bartter FC (1985) The effects of oral furosemide on the response of urinary excretion of cyclic adenosine monophosphate and phosphate to parathyroid extract in normal subjects. Nephron 41:333–336

    Article  CAS  Google Scholar 

  53. Alon US, Nichols MA, Alon MM (1996) Critical role of parathyroid hormone in furosemide-induced nephrocalcinosis in the young rat. Pediatr Res 39:357A

    Google Scholar 

  54. Pattaragarn A, Fox J, Alon US (2004) Effect of the calcimimetic NPS R-467 on furosemide-induced nephrocalcinosis in the young rat. Kidney Int 65:1684–1689

    Article  CAS  Google Scholar 

  55. Srivastava T, Jafri S, Truog W, Sebestyen VanSickle J, Maimtim W, Alon US (2017) Successful reversal of furosemide-induced secondary hyperparathyroidism with cinacalcet. Pediatrics 140:e20163781

    Article  Google Scholar 

  56. Najak ZD, Harris EM, Jr LA, Pruitt AW (1983) Pulmonary effects of furosemide in preterm infants with lung disease. J Pediatr 102:758–763

    Article  CAS  Google Scholar 

  57. Muller ME, Forni-Ogna V, Maillard M, Stoudmann C, Zweiacker C, Anex C, Wuerzner G, Burnier M, Bonny O (2015) Furosemide stimulation of parathormone in humans: role of the calcium-sensing receptor and the renin-angiotensin system. Pflugers Arch 467:2413–2421

  58. Srivastava T, Alon US (2007) Pathophysiology of hypercalciuria in children. Pediatr Nephrol (10):1659–1673

  59. Leppla D, Browne R, Hill K, Pak CY (1983) Effect of amiloride with or without hydrochlorothiazide on urinary calcium and saturation of calcium salts. J Clin Endocrinol Metab 57:920–924

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri S. Alon.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Answers to Questions: 1. c; 2. a; 3. d; 4. b; 5. a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanSickle, J.S., Srivastava, T. & Alon, U.S. Use of calcimimetics in children with normal kidney function. Pediatr Nephrol 34, 413–422 (2019). https://doi.org/10.1007/s00467-018-3935-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-018-3935-1

Keywords

Navigation