Skip to main content

Advertisement

Log in

Biomarkers to detect rejection after kidney transplantation

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Detecting acute rejection in kidney transplantation has been traditionally done using histological analysis of invasive allograft biopsies, but this method carries a risk and is not perfect. Transplant professionals have been working to develop more accurate or less invasive biomarkers that can predict acute rejection or subsequent worse allograft survival. These biomarkers can use tissue, blood or urine as a source. They can comprise individual molecules or panels, singly or in combination, across different components or pathways of the immune system. This review highlights the most recent evidence for biomarker efficacy, especially from multicenter trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dharnidharka VR, Fiorina P, Harmon WE (2014) Kidney transplantation in children. N Engl J Med 371:549–558

    Article  PubMed  CAS  Google Scholar 

  2. Dharnidharka VR, Lamb KE, Zheng J, Schechtman KB, Meier-Kriesche HU (2015) Lack of significant improvements in long-term allograft survival in pediatric solid organ transplantation: a US national registry analysis. Pediatr Transplant 19:477–483

    Article  PubMed  Google Scholar 

  3. Patel R, Terasaki PI (1969) Significance of the positive crossmatch test in kidney transplantation. N Engl J Med 280:735–739

    Article  PubMed  CAS  Google Scholar 

  4. Anglicheau D, Naesens M, Essig M, Gwinner W, Marquet P (2016) Establishing biomarkers in transplant medicine: a critical review of current approaches. Transplantation 100:2024–2038

    Article  PubMed  CAS  Google Scholar 

  5. Terasaki PI, Ozawa M (2004) Predicting kidney graft failure by HLA antibodies: a prospective trial. Am J Transplant 4:438–443

    Article  PubMed  CAS  Google Scholar 

  6. Wu P, Everly MJ, Rebellato LM, Haisch CE, Briley KP, Bolin P, Kendrick WT, Kendrick SA, Morgan C, Harland RC, Terasaki PI (2013) Trends and characteristics in early glomerular filtration rate decline after posttransplantation alloantibody appearance. Transplantation 96:919–925

    Article  PubMed  CAS  Google Scholar 

  7. Loupy A, Lefaucheur C, Vernerey D, Prugger C, Duong van Huyen JP, Mooney N, Suberbielle C, Fremeaux-Bacchi V, Mejean A, Desgrandchamps F, Anglicheau D, Nochy D, Charron D, Empana JP, Delahousse M, Legendre C, Glotz D, Hill GS, Zeevi A, Jouven X (2013) Complement-binding anti-HLA antibodies and kidney-allograft survival. N Engl J Med 369:1215–1226

    Article  PubMed  CAS  Google Scholar 

  8. Guidicelli G, Guerville F, Lepreux S, Wiebe C, Thaunat O, Dubois V, Visentin J, Bachelet T, Morelon E, Nickerson P, Merville P, Taupin JL, Couzi L (2016) Non-complement-binding de novo donor-specific anti-HLA antibodies and kidney allograft survival. J Am Soc Nephrol 27:615–625

    Article  PubMed  CAS  Google Scholar 

  9. Reed EF, Rao P, Zhang Z, Gebel H, Bray RA, Guleria I, Lunz J, Mohanakumar T, Nickerson P, Tambur AR, Zeevi A, Heeger PS, Gjertson D (2013) Comprehensive assessment and standardization of solid phase multiplex-bead arrays for the detection of antibodies to HLA. Am J Transplant 13:1859–1870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tambur AR, Herrera ND, Haarberg KM, Cusick MF, Gordon RA, Leventhal JR, Friedewald JJ, Glotz D (2015) Assessing antibody strength: comparison of MFI, C1q, and titer information. Am J Transplant 15:2421–2430

    Article  PubMed  CAS  Google Scholar 

  11. Menon MC, Murphy B, Heeger PS (2017) Moving biomarkers toward clinical implementation in kidney transplantation. J Am Soc Nephrol 28:735–747

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lachmann N, Terasaki PI, Budde K, Liefeldt L, Kahl A, Reinke P, Pratschke J, Rudolph B, Schmidt D, Salama A, Schonemann C (2009) Anti-human leukocyte antigen and donor-specific antibodies detected by luminex posttransplant serve as biomarkers for chronic rejection of renal allografts. Transplantation 87:1505–1513

    Article  PubMed  CAS  Google Scholar 

  13. Dragun D, Muller DN, Brasen JH, Fritsche L, Nieminen-Kelha M, Dechend R, Kintscher U, Rudolph B, Hoebeke J, Eckert D, Mazak I, Plehm R, Schonemann C, Unger T, Budde K, Neumayer HH, Luft FC, Wallukat G (2005) Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 352:558–569

    Article  PubMed  CAS  Google Scholar 

  14. Chaudhuri A, Ozawa M, Everly MJ, Ettenger R, Dharnidharka V, Benfield M, Mathias R, Portale A, McDonald R, Harmon W, Kershaw D, Vehaskari VM, Kamil E, Baluarte HJ, Warady B, Li L, Sigdel TK, Hsieh SC, Dai H, Naesens M, Waskerwitz J, Salvatierra O Jr, Terasaki PI, Sarwal MM (2013) The clinical impact of humoral immunity in pediatric renal transplantation. J Am Soc Nephrol 24:655–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wiebe C, Gibson IW, Blydt-Hansen TD, Karpinski M, Ho J, Storsley LJ, Goldberg A, Birk PE, Rush DN, Nickerson PW (2012) Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant 12:1157–1167

    Article  PubMed  CAS  Google Scholar 

  16. Kim JJ, Balasubramanian R, Michaelides G, Wittenhagen P, Sebire NJ, Mamode N, Shaw O, Vaughan R, Marks SD (2014) The clinical spectrum of de novo donor-specific antibodies in pediatric renal transplant recipients. Am J Transplant 14:2350–2358

    Article  PubMed  CAS  Google Scholar 

  17. Rusai K, Dworak J, Potemkina A, Fischer G, Csaicsich D, Arbeiter K, Aufricht C, Muller-Sacherer T (2016) Donor-specific HLA antibodies and graft function in kidney-transplanted children - the Vienna cohort. Pediatr Transplant 20:507–514

    Article  PubMed  CAS  Google Scholar 

  18. Fichtner A, Susal C, Hocker B, Rieger S, Waldherr R, Westhoff JH, Sander A, Opelz G, Tonshoff B (2016) Association of C1q-fixing DSA with late graft failure in pediatric renal transplant recipients. Pediatr Nephrol 31:1157–1166

    Article  PubMed  Google Scholar 

  19. Hernandez-Fuentes MP, Warrens AN, Lechler RI (2003) Immunologic monitoring. Immunol Rev 196:247–264

    Article  PubMed  CAS  Google Scholar 

  20. Heeger PS, Greenspan NS, Kuhlenschmidt S, Dejelo C, Hricik DE, Schulak JA, Tary-Lehmann M (1999) Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J Immunol 163:2267–2275

    PubMed  CAS  Google Scholar 

  21. Augustine JJ, Poggio ED, Heeger PS, Hricik DE (2008) Preferential benefit of antibody induction therapy in kidney recipients with high pretransplant frequencies of donor-reactive interferon-gamma enzyme-linked immunosorbent spots. Transplantation 86:529–534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ashoor I, Najafian N, Korin Y, Reed EF, Mohanakumar T, Ikle D, Heeger PS, Lin M (2013) Standardization and cross validation of alloreactive IFNgamma ELISPOT assays within the clinical trials in organ transplantation consortium. Am J Transplant 13:1871–1879

    Article  PubMed  CAS  Google Scholar 

  23. Hricik DE, Augustine J, Nickerson P, Formica RN, Poggio ED, Rush D, Newell KA, Goebel J, Gibson IW, Fairchild RL, Spain K, Ikle D, Bridges ND, Heeger PS, consortium C (2015) Interferon gamma ELISPOT testing as a risk-stratifying biomarker for kidney transplant injury: results from the CTOT-01 multicenter study. Am J Transplant 15:3166–3173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC, Cappola TP, Kao A, Anderson AS, Cotts WG, Ewald GA, Baran DA, Bogaev RC, Elashoff B, Baron H, Yee J, Valantine HA (2010) Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med 362:1890–1900

    Article  PubMed  CAS  Google Scholar 

  25. Deng MC, Eisen HJ, Mehra MR, Billingham M, Marboe CC, Berry G, Kobashigawa J, Johnson FL, Starling RC, Murali S, Pauly DF, Baron H, Wohlgemuth JG, Woodward RN, Klingler TM, Walther D, Lal PG, Rosenberg S, Hunt S, Investigators C (2006) Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant 6:150–160

    Article  PubMed  CAS  Google Scholar 

  26. Li L, Khatri P, Sigdel TK, Tran T, Ying L, Vitalone MJ, Chen A, Hsieh S, Dai H, Zhang M, Naesens M, Zarkhin V, Sansanwal P, Chen R, Mindrinos M, Xiao W, Benfield M, Ettenger RB, Dharnidharka V, Mathias R, Portale A, McDonald R, Harmon W, Kershaw D, Vehaskari VM, Kamil E, Baluarte HJ, Warady B, Davis R, Butte AJ, Salvatierra O, Sarwal MM (2012) A peripheral blood diagnostic test for acute rejection in renal transplantation. Am J Transplant 12:2710–2718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sarwal M, Chua MS, Kambham N, Hsieh SC, Satterwhite T, Masek M, Salvatierra O Jr (2003) Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N Engl J Med 349:125–138

    Article  PubMed  CAS  Google Scholar 

  28. Roedder S, Sigdel T, Salomonis N, Hsieh S, Dai H, Bestard O, Metes D, Zeevi A, Gritsch A, Cheeseman J, Macedo C, Peddy R, Medeiros M, Vincenti F, Asher N, Salvatierra O, Shapiro R, Kirk A, Reed EF, Sarwal MM (2014) The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study. PLoS Med 11:e1001759

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kurian SM, Williams AN, Gelbart T, Campbell D, Mondala TS, Head SR, Horvath S, Gaber L, Thompson R, Whisenant T, Lin W, Langfelder P, Robison EH, Schaffer RL, Fisher JS, Friedewald J, Flechner SM, Chan LK, Wiseman AC, Shidban H, Mendez R, Heilman R, Abecassis MM, Marsh CL, Salomon DR (2014) Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling. Am J Transplant 14:1164–1172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Crespo E, Cravedi P, Martorell J, Luque S, Melilli E, Cruzado JM, Jarque M, Meneghini M, Manonelles A, Donadei C, Lloberas N, Goma M, Grinyo JM, Heeger P, Bestard O (2017) Posttransplant peripheral blood donor-specific interferon-gamma enzyme-linked immune spot assay differentiates risk of subclinical rejection and de novo donor-specific alloantibodies in kidney transplant recipients. Kidney Int. doi:10.1016/j.kint.2016.12.024

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schachter AD, Vasconcellos L, Ophascharoensuk V, Zheng XX, Strehlau J, Strom TB (1998) CTL effector mechanisms: diagnostic applications. Transplant Proc 30:2344–2346

    Article  PubMed  CAS  Google Scholar 

  32. Vasconcellos LM, Schachter AD, Zheng XX, Vasconcellos LH, Shapiro M, Harmon WE, Strom TB (1998) Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation 66:562–566

    Article  PubMed  CAS  Google Scholar 

  33. Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, Serur D, Mouradian J, Schwartz JE, Suthanthiran M (2001) Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med 344:947–954

    Article  PubMed  CAS  Google Scholar 

  34. Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, Hartono C, Li B, Sharma VK, Seshan SV, Kapur S, Hancock WW, Schwartz JE, Suthanthiran M (2005) Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med 353:2342–2351

    Article  PubMed  CAS  Google Scholar 

  35. Suthanthiran M, Schwartz JE, Ding R, Abecassis M, Dadhania D, Samstein B, Knechtle SJ, Friedewald J, Becker YT, Sharma VK, Williams NM, Chang CS, Hoang C, Muthukumar T, August P, Keslar KS, Fairchild RL, Hricik DE, Heeger PS, Han L, Liu J, Riggs M, Ikle DN, Bridges ND, Shaked A, Clinical Trials in Organ Transplantation 04 Study I (2013) Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N Engl J Med 369:20–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hu H, Aizenstein BD, Puchalski A, Burmania JA, Hamawy MM, Knechtle SJ (2004) Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction. Am J Transplant 4:432–437

    Article  PubMed  CAS  Google Scholar 

  37. Lazzeri E, Rotondi M, Mazzinghi B, Lasagni L, Buonamano A, Rosati A, Pradella F, Fossombroni V, La Villa G, Gacci M, Bertoni E, Serio M, Salvadori M, Romagnani P (2005) High CXCL10 expression in rejected kidneys and predictive role of pretransplant serum CXCL10 for acute rejection and chronic allograft nephropathy. Transplantation 79:1215–1220

    Article  PubMed  CAS  Google Scholar 

  38. Tatapudi RR, Muthukumar T, Dadhania D, Ding R, Li B, Sharma VK, Lozada-Pastorio E, Seetharamu N, Hartono C, Serur D, Seshan SV, Kapur S, Hancock WW, Suthanthiran M (2004) Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int 65:2390–2397

    Article  PubMed  CAS  Google Scholar 

  39. Matz M, Beyer J, Wunsch D, Mashreghi MF, Seiler M, Pratschke J, Babel N, Volk HD, Reinke P, Kotsch K (2006) Early post-transplant urinary IP-10 expression after kidney transplantation is predictive of short- and long-term graft function. Kidney Int 69:1683–1690

    Article  PubMed  CAS  Google Scholar 

  40. Peng W, Chen J, Jiang Y, Wu J, Shou Z, He Q, Wang Y, Chen Y, Wang H (2008) Urinary fractalkine is a marker of acute rejection. Kidney Int 74:1454–1460

    Article  PubMed  CAS  Google Scholar 

  41. Ding R, Li B, Muthukumar T, Dadhania D, Medeiros M, Hartono C, Serur D, Seshan SV, Sharma VK, Kapur S, Suthanthiran M (2003) CD103 mRNA levels in urinary cells predict acute rejection of renal allografts. Transplantation 75:1307–1312

    Article  PubMed  CAS  Google Scholar 

  42. Blydt-Hansen TD, Gibson IW, Gao A, Dufault B, Ho J (2015) Elevated urinary CXCL10-to-creatinine ratio is associated with subclinical and clinical rejection in pediatric renal transplantation. Transplantation 99:797–804

    Article  PubMed  CAS  Google Scholar 

  43. Hricik DE, Nickerson P, Formica RN, Poggio ED, Rush D, Newell KA, Goebel J, Gibson IW, Fairchild RL, Riggs M, Spain K, Ikle D, Bridges ND, Heeger PS, CTOT-01 consortium (2013) Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J Transplant 13:2634–2644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lorenzen JM, Volkmann I, Fiedler J, Schmidt M, Scheffner I, Haller H, Gwinner W, Thum T (2011) Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant 11:2221–2227

    Article  PubMed  CAS  Google Scholar 

  45. Matz M, Fabritius K, Lorkowski C, Durr M, Gaedeke J, Durek P, Grun JR, Goestemeyer A, Bachmann F, Wu K, Rudolph B, Schmidt D, Weber U, Haftmann C, Unterwalder N, Lachmann N, Radbruch A, Neumayer HH, Mashreghi MF, Budde K (2016) Identification of T cell-mediated vascular rejection after kidney transplantation by the combined measurement of 5 specific MicroRNAs in blood. Transplantation 100:898–907

    Article  PubMed  CAS  Google Scholar 

  46. Lo YM, Tein MS, Pang CC, Yeung CK, Tong KL, Hjelm NM (1998) Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet 351:1329–1330

    Article  PubMed  CAS  Google Scholar 

  47. De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G, Luikart H, Neff NF, Okamoto J, Bernstein D, Weisshaar D, Quake SR, Khush KK (2014) Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med 6:241ra277

    Article  CAS  Google Scholar 

  48. Brandacher G, Cakar F, Winkler C, Schneeberger S, Obrist P, Bosmuller C, Werner-Felmayer G, Werner ER, Bonatti H, Margreiter R, Fuchs D (2007) Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation. Kidney Int 71:60–67

    Article  PubMed  CAS  Google Scholar 

  49. Lahdou I, Sadeghi M, Daniel V, Schenk M, Renner F, Weimer R, Lob S, Schmidt J, Mehrabi A, Schnitzler P, Konigsrainer A, Dohler B, Opelz G, Terness P (2010) Increased pretransplantation plasma kynurenine levels do not protect from but predict acute kidney allograft rejection. Hum Immunol 71:1067–1072

    Article  PubMed  CAS  Google Scholar 

  50. Dharnidharka VR, Al Khasawneh E, Gupta S, Shuster JJ, Theriaque DW, Shahlaee AH, Garrett TJ (2013) Verification of association of elevated serum IDO enzyme activity with acute rejection and low CD4-ATP levels with infection. Transplantation 96:567–572

    Article  PubMed  CAS  Google Scholar 

  51. Kowalski R, Post D, Schneider MC, Britz J, Thomas J, Deierhoi M, Lobashevsky A, Redfield R, Schweitzer E, Heredia A, Reardon E, Davis C, Bentlejewski C, Fung J, Shapiro R, Zeevi A (2003) Immune cell function testing: an adjunct to therapeutic drug monitoring in transplant patient management. Clin Transpl 17:77–88

    Article  Google Scholar 

  52. Kowalski RJ, Post DR, Mannon RB, Sebastian A, Wright HI, Sigle G, Burdick J, Elmagd KA, Zeevi A, Lopez-Cepero M, Daller JA, Gritsch HA, Reed EF, Jonsson J, Hawkins D, Britz JA (2006) Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation 82:663–668

    Article  PubMed  Google Scholar 

  53. Huskey J, Gralla J, Wiseman AC (2011) Single time point immune function assay (ImmuKnow) testing does not aid in the prediction of future opportunistic infections or acute rejection. Clin J Am Soc Nephrol 6:423–429

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ryan CM, Chaudhuri A, Concepcion W, Grimm PC (2014) Immune cell function assay does not identify biopsy-proven pediatric renal allograft rejection or infection. Pediatr Transplant 18:446–452

    Article  PubMed  CAS  Google Scholar 

  55. Libri I, Gnappi E, Zanelli P, Reina M, Giuliodori S, Vaglio A, Palmisano A, Buzio C, Riva G, Barozzi P, Luppi M, Cravedi P, Maggiore U (2013) Trends in immune cell function assay and donor-specific HLA antibodies in kidney transplantation: a 3-year prospective study. Am J Transplant 13:3215–3222

    Article  PubMed  CAS  Google Scholar 

  56. Dharnidharka VR (2012) Less invasive biomarkers of acute rejection: reaching the elusive clinic. Pediatr Transplant 16:308–309

    Article  PubMed  Google Scholar 

  57. Pelzl S, Opelz G, Daniel V, Wiesel M, Susal C (2003) Evaluation of posttransplantation soluble CD30 for diagnosis of acute renal allograft rejection. Transplantation 75:421–423

    Article  PubMed  CAS  Google Scholar 

  58. Pelzl S, Opelz G, Wiesel M, Schnulle P, Schonemann C, Dohler B, Susal C (2002) Soluble CD30 as a predictor of kidney graft outcome. Transplantation 73:3–6

    Article  PubMed  CAS  Google Scholar 

  59. Chen Y, Tai Q, Hong S, Kong Y, Shang Y, Liang W, Guo Z, He X (2012) Pretransplantation soluble CD30 level as a predictor of acute rejection in kidney transplantation: a meta-analysis. Transplantation 94:911–918

    Article  PubMed  CAS  Google Scholar 

  60. Billing H, Sander A, Susal C, Ovens J, Feneberg R, Hocker B, Vondrak K, Grenda R, Friman S, Milford DV, Lucan M, Opelz G, Tonshoff B (2013) Soluble CD30 and ELISA-detected human leukocyte antigen antibodies for the prediction of acute rejection in pediatric renal transplant recipients. Transpl Int 26:331–338

    Article  PubMed  CAS  Google Scholar 

  61. Furness PN, Taub N, Assmann KJ, Banfi G, Cosyns JP, Dorman AM, Hill CM, Kapper SK, Waldherr R, Laurinavicius A, Marcussen N, Martins AP, Nogueira M, Regele H, Seron D, Carrera M, Sund S, Taskinen EI, Paavonen T, Tihomirova T, Rosenthal R (2003) International variation in histologic grading is large, and persistent feedback does not improve reproducibility. Am J Surg Pathol 27:805–810

    Article  PubMed  Google Scholar 

  62. Famulski KS, de Freitas DG, Kreepala C, Chang J, Sellares J, Sis B, Einecke G, Mengel M, Reeve J, Halloran PF (2012) Molecular phenotypes of acute kidney injury in kidney transplants. J Am Soc Nephrol 23:948–958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mengel M, Reeve J, Bunnag S, Einecke G, Sis B, Mueller T, Kaplan B, Halloran PF (2009) Molecular correlates of scarring in kidney transplants: the emergence of mast cell transcripts. Am J Transplant 9:169–178

    Article  PubMed  CAS  Google Scholar 

  64. Reeve J, Einecke G, Mengel M, Sis B, Kayser N, Kaplan B, Halloran PF (2009) Diagnosing rejection in renal transplants: a comparison of molecular- and histopathology-based approaches. Am J Transplant 9:1802–1810

    Article  PubMed  CAS  Google Scholar 

  65. Reeve J, Sellares J, Mengel M, Sis B, Skene A, Hidalgo L, de Freitas DG, Famulski KS, Halloran PF (2013) Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am J Transplant 13:645–655

    Article  PubMed  CAS  Google Scholar 

  66. Sellares J, Reeve J, Loupy A, Mengel M, Sis B, Skene A, de Freitas DG, Kreepala C, Hidalgo LG, Famulski KS, Halloran PF (2013) Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am J Transplant 13:971–983

    Article  PubMed  CAS  Google Scholar 

  67. Modena BD, Kurian SM, Gaber LW, Waalen J, Su AI, Gelbart T, Mondala TS, Head SR, Papp S, Heilman R, Friedewald JJ, Flechner SM, Marsh CL, Sung RS, Shidban H, Chan L, Abecassis MM, Salomon DR (2016) Gene expression in biopsies of acute rejection and interstitial fibrosis/tubular atrophy reveals highly shared mechanisms that correlate with worse long-term outcomes. Am J Transplant 16:1982–1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. O’Connell PJ, Zhang W, Menon MC, Yi Z, Schröppel B, Gallon L, Luan Y, Rosales IA, Ge Y, Losic B, Xi C, Woytovich C, Keung KL, Wei C, Greene I, Overbey J, Bagiella E, Najafian N, Samaniego M, Djamali A, Alexander SI, Nankivell BJ, Chapman JR, Smith RN, Colvin R, Murphy B (2016) Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: a multicentre, prospective study. Lancet 388:983–993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Halloran PF, Pereira AB, Chang J, Matas A, Picton M, De Freitas D, Bromberg J, Seron D, Sellares J, Einecke G, Reeve J (2013) Potential impact of microarray diagnosis of T cell-mediated rejection in kidney transplants: the INTERCOM study. Am J Transplant 13:2352–2363

    Article  PubMed  CAS  Google Scholar 

  70. Halloran PF, Pereira AB, Chang J, Matas A, Picton M, De Freitas D, Bromberg J, Seron D, Sellares J, Einecke G, Reeve J (2013) Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM). Am J Transplant 13:2865–2874

    Article  PubMed  CAS  Google Scholar 

  71. Halloran PF, Reeve J, Akalin E, Aubert O, Bohmig GA, Brennan D, Bromberg J, Einecke G, Eskandary F, Gosset C, Duong Van Huyen JP, Gupta G, Lefaucheur C, Malone A, Mannon RB, Seron D, Sellares J, Weir M, Loupy A (2017) Real time central assessment of kidney transplant indication biopsies by microarrays: the INTERCOMEX study. Am J Transplant. doi:10.1111/ajt.14329

    Article  PubMed Central  PubMed  Google Scholar 

  72. Yilmaz S, Tomlanovich S, Mathew T, Taskinen E, Paavonen T, Navarro M, Ramos E, Hooftman L, Hayry P (2003) Protocol core needle biopsy and histologic chronic allograft damage index (CADI) as surrogate end point for long-term graft survival in multicenter studies. J Am Soc Nephrol 14:773–779

    Article  PubMed  Google Scholar 

  73. Einecke G, Reeve J, Sis B, Mengel M, Hidalgo L, Famulski KS, Matas A, Kasiske B, Kaplan B, Halloran PF (2010) A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest 120:1862–1872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Naesens M, Khatri P, Li L, Sigdel TK, Vitalone MJ, Chen R, Butte AJ, Salvatierra O, Sarwal MM (2011) Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes. Kidney Int 80:1364–1376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Khatri P, Roedder S, Kimura N, De Vusser K, Morgan AA, Gong Y, Fischbein MP, Robbins RC, Naesens M, Butte AJ, Sarwal MM (2013) A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J Exp Med 210:2205–2221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas R. Dharnidharka.

Ethics declarations

Disclosures

No relevant disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharnidharka, V.R., Malone, A. Biomarkers to detect rejection after kidney transplantation. Pediatr Nephrol 33, 1113–1122 (2018). https://doi.org/10.1007/s00467-017-3712-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3712-6

Keywords

Navigation