Skip to main content
Log in

An adaptive continuous–discontinuous approach for the analysis of phase field fracture using mesh refinement and coarsening schemes and octree-based trimmed hexahedral meshes

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel adaptive continuous–discontinuous approach for the analysis of phase field fracture. An initial trimmed hexahedral (TH) mesh is created by cutting a hexahedral background grid with the boundary of the solid domain. Octree-based adaptive mesh refinement is performed on the initial TH mesh based on an energy-based criterion to accurately resolve the damage evolution along the phase field crack. Critical damage isosurfaces of the phase field are used to convert fully developed phase field cracks into discontinuous discrete cracks. Mesh coarsening is also performed along the discontinuous discrete cracks to reduce the computational cost. Three-dimensional problems of quasi-brittle fracture are investigated to verify the effectiveness and efficiency of the present adaptive continuous–discontinuous approach for the analysis of phase field fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9

    Article  MathSciNet  Google Scholar 

  2. Griffits AA (1921) VI. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character 221:163–198. https://doi.org/10.1098/rsta.1921.0006

    Article  Google Scholar 

  3. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311. https://doi.org/10.1002/nme.2861

    Article  MathSciNet  Google Scholar 

  4. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778. https://doi.org/10.1016/j.cma.2010.04.011

    Article  MathSciNet  Google Scholar 

  5. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405. https://doi.org/10.1007/s00466-014-1109-y

    Article  MathSciNet  Google Scholar 

  6. Jeong H, Signetti S, Han TS, Ryu S (2018) Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation. Comput Mater Sci 155:483–492. https://doi.org/10.1016/j.commatsci.2018.09.021

    Article  Google Scholar 

  7. Patil RU, Mishra BK, Singh IV (2018) An adaptive multiscale phase field method for brittle fracture. Comput Methods Appl Mech Eng 329:254–288. https://doi.org/10.1016/j.cma.2017.09.021

    Article  MathSciNet  Google Scholar 

  8. Patil RU, Mishra BK, Singh IV (2018) A local moving extended phase field method (LMXPFM) for failure analysis of brittle materials. Comput Methods Appl Mech Eng 342:674–709. https://doi.org/10.1016/j.cma.2018.08.018

    Article  MathSciNet  Google Scholar 

  9. Wu JY (2018) Robust numerical implementation of non-standard phase-field damage models for failure in solids. Comput Methods Appl Mech Eng 340:767–797. https://doi.org/10.1016/j.cma.2018.06.007

    Article  MathSciNet  Google Scholar 

  10. Kim H, Kim H (2021) A novel adaptive mesh refinement scheme for the simulation of phase-field fracture using trimmed hexahedral meshes. Int J Numer Methods Eng 122:1493–1512. https://doi.org/10.1002/nme.6587

    Article  MathSciNet  Google Scholar 

  11. Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495. https://doi.org/10.1016/j.cma.2015.03.009

    Article  MathSciNet  Google Scholar 

  12. Badnava H, Msekh MA, Etemadi E, Rabczuk T (2018) An h-adaptive thermo-mechanical phase field model for fracture. Finite Elem Anal Des 138:31–47. https://doi.org/10.1016/j.finel.2017.09.003

    Article  Google Scholar 

  13. Nagaraja S, Elhaddad M, Ambati M et al (2019) Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method. Comput Mech 63:1283–1300. https://doi.org/10.1007/s00466-018-1649-7

    Article  MathSciNet  Google Scholar 

  14. Muixí A, Fernández-Méndez S, Rodríguez-Ferran A (2020) Adaptive refinement for phase-field models of brittle fracture based on Nitsche’s method. Comput Mech 66:69–85. https://doi.org/10.1007/s00466-020-01841-1

    Article  MathSciNet  Google Scholar 

  15. Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2015) An assessment of the phase field formulation for crack growth. Comput Methods Appl Mech Eng 294:313–330. https://doi.org/10.1016/j.cma.2015.06.009

    Article  MathSciNet  Google Scholar 

  16. Hirshikesh H, Pramod ALN, Waisman H, Natarajan S (2021) Adaptive phase field method using novel physics based refinement criteria. Comput Methods Appl Mech Eng 383:113874. https://doi.org/10.1016/j.cma.2021.113874

    Article  MathSciNet  Google Scholar 

  17. Freddi F, Mingazzi L (2022) Mesh refinement procedures for the phase field approach to brittle fracture. Comput Methods Appl Mech Eng 388:114214. https://doi.org/10.1016/j.cma.2021.114214

    Article  MathSciNet  Google Scholar 

  18. Xu W, Li Y, Li H et al (2022) Multi-level adaptive mesh refinement technique for phase-field method. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2022.108891

    Article  Google Scholar 

  19. Xu W, Jiang D, Zhang C et al (2023) An adaptive mesh refinement strategy for 3D phase modeling of brittle fracture. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2023.109241

    Article  Google Scholar 

  20. Tian F, Tang X, Xu T et al (2019) A hybrid adaptive finite element phase-field method for quasi-static and dynamic brittle fracture. Int J Numer Methods Eng 120:1108–1125. https://doi.org/10.1002/nme.6172

    Article  MathSciNet  Google Scholar 

  21. Hirshikesh, Pramod ALN, Annabattula RK et al (2019) Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method. Comput Methods Appl Mech Eng 355:284–307. https://doi.org/10.1016/j.cma.2019.06.002

    Article  MathSciNet  Google Scholar 

  22. Aldakheel F, Hudobivnik B, Hussein A, Wriggers P (2018) Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput Methods Appl Mech Eng 341:443–466. https://doi.org/10.1016/j.cma.2018.07.008

    Article  MathSciNet  Google Scholar 

  23. Hirshikesh, Jansari C, Kannan K et al (2019) Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2019.106599

    Article  Google Scholar 

  24. Xing C, Yu T, Sun Y, Wang Y (2023) An adaptive phase-field model with variable-node elements for fracture of hyperelastic materials at large deformations. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2023.109115

    Article  Google Scholar 

  25. Assaf R, Birk C, Natarajan S, Gravenkamp H (2022) Three-dimensional phase-field modeling of brittle fracture using an adaptive octree-based scaled boundary finite element approach. Comput Methods Appl Mech Eng 399:115364. https://doi.org/10.1016/j.cma.2022.115364

    Article  MathSciNet  Google Scholar 

  26. Aldakheel F, Noii N, Wick T, Wriggers P (2021) A global–local approach for hydraulic phase-field fracture in poroelastic media. Comput Math Appl 91:99–121. https://doi.org/10.1016/j.camwa.2020.07.013

    Article  MathSciNet  Google Scholar 

  27. Sarkar S, Singh IV, Mishra BK (2020) Adaptive mesh refinement schemes for the localizing gradient damage method based on biquadratic-bilinear coupled-field elements. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2019.106790

    Article  Google Scholar 

  28. Chiaruttini V, Riolo V, Feyel F (2013) Advanced remeshing techniques for complex 3D crack propagation. In: 13th International conference on fracture 2013, ICF 2013 1, pp 547–555

  29. Mediavilla J, Peerlings RHJ, Geers MGD (2006) A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput Struct 84:604–623. https://doi.org/10.1016/j.compstruc.2005.10.007

    Article  Google Scholar 

  30. Eldahshan H, Alves J, Bouchard PO et al (2021) CIPFAR: a 3D unified numerical framework for the modeling of ductile fracture based on the phase field model and adaptive remeshing. Comput Methods Appl Mech Eng 387:114171. https://doi.org/10.1016/j.cma.2021.114171

    Article  MathSciNet  Google Scholar 

  31. Song JH, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42:239–250. https://doi.org/10.1007/s00466-007-0210-x

    Article  Google Scholar 

  32. Peerlings RHJ, Brekelmans WAM, De Borst R, Geers MGD (2000) Gradient-enhanced damage modelling of high-cycle fatigue. Int J Numer Methods Eng 49:1547–1569. https://doi.org/10.1002/1097-0207(20001230)49:12%3c1547::AID-NME16%3e3.0.CO;2-D

    Article  Google Scholar 

  33. Tamayo-Mas E, Rodríguez-Ferran A (2015) A medial-axis-based model for propagating cracks in a regularised bulk. Int J Numer Methods Eng 101:489–520. https://doi.org/10.1002/nme.4757

    Article  Google Scholar 

  34. Geelen RJM, Liu Y, Dolbow JE, Rodríguez-Ferran A (2018) An optimization-based phase-field method for continuous-discontinuous crack propagation. Int J Numer Methods Eng 116:1–20. https://doi.org/10.1002/nme.5911

    Article  MathSciNet  Google Scholar 

  35. Giovanardi B, Scotti A, Formaggia L (2017) A hybrid XFEM—phase field (Xfield) method for crack propagation in brittle elastic materials. Comput Methods Appl Mech Eng 320:396–420. https://doi.org/10.1016/j.cma.2017.03.039

    Article  MathSciNet  Google Scholar 

  36. Ho-Nguyen-Tan T, Kim HG (2020) Numerical simulation of crack propagation in shell structures using interface shell elements. Comput Mech 66:537–557. https://doi.org/10.1007/s00466-020-01863-9

    Article  MathSciNet  Google Scholar 

  37. Hussein A, Hudobivnik B, Wriggers P (2020) A combined adaptive phase field and discrete cutting method for the prediction of crack paths. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2020.113329

    Article  MathSciNet  Google Scholar 

  38. Muixí A, Marco O, Rodríguez-Ferran A, Fernández-Méndez S (2021) A combined XFEM phase-field computational model for crack growth without remeshing. Comput Mech 67:231–249. https://doi.org/10.1007/s00466-020-01929-8

    Article  MathSciNet  Google Scholar 

  39. Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. J Elast 91:5–148. https://doi.org/10.1007/s10659-007-9107-3

    Article  MathSciNet  Google Scholar 

  40. Kim H-Y, Kim H-G (2020) Efficient isoparametric trimmed-hexahedral elements with explicit shape functions. Comput Methods Appl Mech Eng 372:113316. https://doi.org/10.1016/j.cma.2020.113316

    Article  MathSciNet  Google Scholar 

  41. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21:163–169. https://doi.org/10.1145/37402.37422

    Article  Google Scholar 

  42. Sohn D, Han J, Cho YS, Im S (2013) A finite element scheme with the aid of a new carving technique combined with smoothed integration. Comput Methods Appl Mech Eng 254:42–60. https://doi.org/10.1016/j.cma.2012.10.014

    Article  MathSciNet  Google Scholar 

  43. Nguyen-Hoang S, Sohn D, Kim HG (2017) A new polyhedral element for the analysis of hexahedral-dominant finite element models and its application to nonlinear solid mechanics problems. Comput Methods Appl Mech Eng 324:248–277. https://doi.org/10.1016/j.cma.2017.06.014

    Article  MathSciNet  Google Scholar 

  44. Ho-Nguyen-Tan T, Kim HG (2018) A new strategy for finite-element analysis of shell structures using trimmed quadrilateral shell meshes: a paving and cutting algorithm and a pentagonal shell element. Int J Numer Methods Eng 114:1–27. https://doi.org/10.1002/nme.5730

    Article  MathSciNet  Google Scholar 

  45. Martin S, Kaufmann P, Botsch M et al (2008) Polyhedral finite elements using harmonic basis functions. Eurograph Symp Geom Process 27:1521–1529. https://doi.org/10.1111/j.1467-8659.2008.01293.x

    Article  Google Scholar 

  46. Bishop JE (2014) A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Int J Numer Methods Eng 97:1–31. https://doi.org/10.1002/nme.4562

    Article  MathSciNet  Google Scholar 

  47. Kim H, Sohn D (2015) A new finite element approach for solving three-dimensional problems using trimmed hexahedral elements. Int J Numer Methods Eng 102:1527–1553. https://doi.org/10.1002/nme.4850

    Article  MathSciNet  Google Scholar 

  48. Arriaga M, Waisman H (2018) Multidimensional stability analysis of the phase-field method for fracture with a general degradation function and energy split. Comput Mech 61:181–205. https://doi.org/10.1007/s00466-017-1432-1

    Article  MathSciNet  Google Scholar 

  49. Sohn D (2018) Periodic mesh generation and homogenization of inclusion-reinforced composites using an element-carving technique with local mesh refinement. Compos Struct 185:65–80. https://doi.org/10.1016/j.compstruct.2017.10.088

    Article  Google Scholar 

  50. Nguyen SH, Sohn D, Kim H-G (2022) A novel hr-adaptive mesh refinement scheme for stress-constrained shape and topology optimization using level-set-based trimmed meshes. Struct Multidiscip Optim 65:71. https://doi.org/10.1007/s00158-021-03132-6

    Article  MathSciNet  Google Scholar 

  51. Morton DJ, Tyler JM, Dorroh JR (1995) A new 3D finite element for adaptive h-refinement in 1-irregular meshes. Int J Numer Methods Eng 38:3989–4008. https://doi.org/10.1002/nme.1620382306

    Article  Google Scholar 

  52. Feder J (1980) Random sequential adsorption. J Theor Biol 87:237–254. https://doi.org/10.1016/0022-5193(80)90358-6

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2022R1I1A2053461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Gyu Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HY., Kim, HG. An adaptive continuous–discontinuous approach for the analysis of phase field fracture using mesh refinement and coarsening schemes and octree-based trimmed hexahedral meshes. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02472-6

Keywords

Navigation